

```

---
title: "homework3"
author: "Doug Timmer"
date: "9/7/2021"
output: word_document
---

```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
library(readxl)
mane6313_homework3 <- read_excel("mane6313_homework3.xlsx")
```

## Problem 2.28

### part a

```{r echo=TRUE}
var.test(mane6313_homework3$p2_28_type1,mane6313_homework3$p2_28_type2,alternative = "two.sided",conf.level = 0.95)
```

The p-value for the F-test is 0.9744. Using  $\alpha=0.05$ , the conclusion of the hypothesis test  $H_0: \frac{\sigma_1^2}{\sigma_2^2}=1$  versus  $H_1: \frac{\sigma_1^2}{\sigma_2^2} \neq 1$  is fail to reject  $H_0$ . Thus, it can be assumed that the variances are equal.

### Part b

Conduct a two-sample t-test to determine if the means are equal. Use  $\alpha=0.05$ .

```{r}
t.test(mane6313_homework3$p2_28_type1,mane6313_homework3$p2_28_type2,alternative = "two.sided",mu=0,paired=FALSE,var.equal=TRUE, conf.level = 0.95)
```

The p-value for the t-test is 0.9622. Using  $\alpha=0.05$ , the conclusion of the hypothesis test  $H_0: \mu_1=\mu_2=0$  versus  $H_1: \mu_1 \neq \mu_2$  is fail to reject  $H_0$ . Thus, it can be assumed that the means are equal.

### Part c

Test for normality.

```{r}
library(car)
```

```

```
qqPlot(mane6313_hw3$p2_28_type1)
qqPlot(mane6313_hw3$p2_28_type2)
````
```

Observing both normal probability plots (qqPlots), all points for both plots lie within the confidence bands. Therefore, it can be assume that both samples are from a normal distribution.

---

```
Problem 2.33
```

```
Part a
```

Construct a 95% confidence interval for  $\sigma^2$ .

```
````{r}
library(EnvStats) # import library
varTest(mane6313_hw3$p2_33,alternative = "two.sided",
conf.level = 0.95, sigma.squared=1.0)
````
```

From the output, the 95% confidence interval for  $\sigma^2$  is (0.4571524, 1.6862395)

```
Part b
```

Perform a hypothesis test of  $H_0: \sigma^2 = 1$  versus  $H_1: \sigma^2 \neq 1$ . Use  $\alpha = 0.05$ .

```
````{r}
library(EnvStats) # import library
varTest(mane6313_hw3$p2_33,alternative = "two.sided",
conf.level = 0.95, sigma.squared=1.0)
````
```

From the varTest output, the p-value is 0.5572. Since p-value is greater than  $\alpha$ , the conclusion is fail to reject  $H_0$  and accept the null hypothesis that  $\sigma^2$  is equal to one.

```
Part c
```

Check the assumption of normality.

```
````{r}
library(car)
car::qqPlot(mane6313_hw3$p2_33)
````
```

Notice that a point is beyond the confidence bands. Therefore, the data is not from a normal distribution and it is not appropriate to use the t-test. A non-parametric test such as Kruskall-Wallis test should be used.

---

```

Problem 2.34

Part a

Conduct a test of hypothesis using $\alpha=0.05$ to determine if
 $H_0: \mu_d=0$ versus $H_1: \mu_d \neq 1$.

```{r}
t.test(mane6313_hw3$p2_34_caliper1, mane6313_hw3$p2_34
       _caliper2, alternative = "two.sided", mu=0, paired=TRUE, conf.level
       = 0.95)

```
The critical value for the rejection region is given below.
```{r}
qt(.975,11)
```
Since the absolute value of the test statistics is not greater
than the critical value, 2.200985. The conclusion is to fail to
reject H_0 and accept the null hypothesis that the means are
equal.

Part b

The p-value, observed from the part a output, is 0.6742.

Part c

The value of the two-sided 95% confidence interval, found in
the part a output, is (-0.001024344, 0.001524344).

```