

Printout

Sunday, September 19, 2021 1:04 PM

Section 1

MANE 6313

Subsection 1

Week 5, Module E

Student Learning Outcome

Analyze simple comparative experiments and experiments with a single factor.

Module Learning Outcome

Explain miscellaneous topics associated with designs with blocking variables.

Greek Letters

<i>Lowercase</i>			
α \alpha	θ \theta	\circ o	τ \tau
β \beta	ϑ \vartheta	π \pi	υ \upsilon
γ \gamma	ι \iota	ϖ \varpi	ϕ \phi
δ \delta	κ \kappa	ρ \rho	φ \varphi
ϵ \epsilon	λ \lambda	ϱ \varrho	χ \chi
ε \varepsilon	μ \mu	σ \sigma	ψ \psi
ζ \zeta	ν \nu	ς \varsigma	ω \omega
η \eta	ξ \xi		
<i>Uppercase</i>			
Γ \Gamma	Λ \Lambda	Σ \Sigma	Ψ \Psi
Δ \Delta	Ξ \Xi	Υ \Upsilon	Ω \Omega
Θ \Theta	Π \Pi	Φ \Phi	

Table 3.3: Greek Letters.

Taken from Lamport (1994). *LaTeX: A Document Preparation System*, 2nd edition. Addison-Wesley

Blocking Designs Improve Sensitivity of Tests

■ TABLE 4.4 *Correct*
Analysis of Variance for the Vascular Graft Experiment

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0	P-Value
Treatments (extrusion pressure)	178.17	3	59.39	8.11	0.0019
Blocks (batches)	192.25	5	38.45		
Error	109.89	15	7.33		
Total	480.31	23			

■ TABLE 4.5
Incorrect Analysis of the Vascular Graft Experiment as a Completely Randomized Design

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0	P-Value
Extrusion pressure	178.17	3	59.39	3.95	0.0235
Error	302.14	20	15.11		
Total	480.31	23			

Balanced Incomplete Block Design

- We will not cover in this class
- Occurs when the block size is less than the treatment size
- Is balanced in that any pair of treatments occur together the same number times as any other pair of observations.

Importance of ANOVA

- What analysis technique was used for the RBCD, Latin Squares and Graeco-Latin Squares design?
- Must master this technique (if you have not)

Model Adequacy Checking

- Very important topic
- Should be performed for every model
- Residual analysis is the same as the one-way ANOVA (Minitab Demo)

