

# Printout

Sunday, September 26, 2021 1:55 PM

MANE 6313

## Section 1

MANE 6313

1 / 8

## Subsection 1

### Week 6, Module F

## Student Learning Outcome

- Select an appropriate experimental design with one or more factors,
- Select an appropriate model with one or more factors,
- Evaluate statistical analyses of experimental designs,
- Assess the model adequacy of any experimental design, and
- Interpret model results.

## Module Learning Outcome

*General Factorial Design*

## General Factorial Design

- We will assume  $n \geq 2$  so we can include all two-factor interactions and estimate SS-error
- For a fixed model with 3 factors we use the following model

$$y_{ijkl} = \mu + \tau_i + \beta_j + \gamma_k + (\tau\beta)_{ij} + (\tau\gamma)_{ik} + (\beta\gamma)_{jk} + (\tau\beta\gamma)_{ijk} + \varepsilon_{ijkl}$$

$\begin{matrix} (3) \\ (2) \end{matrix} - 2\text{-factor int.}$   
 $\begin{matrix} (3) \\ (3) \end{matrix} - 3\text{-factor int.}$

- Sum of squares equations given on pages 201-202 (no surprises)

### Important Point

- The ANOVA and analysis is always the same for experiments with fixed effects
- The presence of random factors complicates the design
- The expected mean squares must be calculated and the divisor will not always be MS(error)!
- Discussed in chapter 12 (not covered in class).

## Blocking in a Factorial Design

- Consider the two-factor factorial design conducted as a randomized block design
- The statistical model is

$$y_{ijk} = \mu + \tau_i + \beta_j + (\tau\beta)_{ij} + \delta_k + \varepsilon_{ijk} \quad \begin{cases} i = 1, 2, \dots, a \\ j = 1, 2, \dots, b \\ k = 1, 2, \dots, n \end{cases}$$

*block effect*

where  $\delta_k$  is the block effect.

- The model assumes that interactions between blocks and treatments is negligible.
- If these interactions exist, they can not be separated from the error component.
- Sum of squares formulas and an example ANOVA are given in table

### Problem 5.28

5.28 Consider the data in Problem 5.13. Analyze the data, assuming that replicates are blocks.

5.13 The factors that influence the breaking strength of a synthetic fiber are being studied. Four production machines and three operators are chosen and a factorial experiment is run using fiber from the same production batch. The results are as follows:

| Operator | Machine |     |     |     |
|----------|---------|-----|-----|-----|
|          | 1       | 2   | 3   | 4   |
| 1        | 109     | 110 | 108 | 110 |
|          | 110     | 115 | 109 | 110 |
| 2        | 110     | 110 | 111 | 110 |
|          | 112     | 111 | 109 | 110 |
| 3        | 116     | 112 | 114 | 115 |
|          | 114     | 115 | 119 | 116 |

(a) Analyze the data and draw conclusions. Use  $\alpha = 0.05$ .  
(b) Prepare appropriate residual plots and comment on the model's adequacy.

### Analysis of Variance

| Source             | DF | Adj SS  | Adj MS | F-Value | P-Value |
|--------------------|----|---------|--------|---------|---------|
| Model              | 12 | 219.500 | 18.292 | 4.63    | 0.008   |
| Blocks             | 1  | 2.042   | 2.042  | 0.52    | 0.487   |
| Linear             | 5  | 172.792 | 34.558 | 8.75    | 0.001   |
| Machine            | 3  | 12.458  | 4.153  | 1.05    | 0.409   |
| Operator           | 2  | 160.333 | 80.167 | 20.29   | 0.000   |
| 2-Way Interactions | 6  | 44.667  | 7.444  | 1.88    | 0.172   |
| Machine*Operator   | 6  | 44.667  | 7.444  | 1.88    | 0.172   |
| Error              | 11 | 43.458  | 3.951  |         |         |
| Total              | 23 | 262.958 |        |         |         |

The block effect is not statistically significant and can be removed  
From the model

Only the operator term is statistically significant

Two-factor interaction is not statistically significant

Screen clipping taken: 9/26/2021 2:07 PM

Sunday, September 26, 2021 2:09 PM