

Printout

Sunday, October 10, 2021 11:08 AM

Section 1

MANE 6313

Subsection 1

Week 8, Module A

Student Learning Outcome

- Select an appropriate experimental design with one or more factors,
- Select an appropriate model with one or more factors,
- Evaluate statistical analyses of experimental designs,
- Assess the model adequacy of any experimental design, and
- Interpret model results.

Module Learning Outcome

Explain blocking on replicates in two-level factorial designs.

Blocking a Replicated 2^k Factorial Design

- A 2^k factorial design with n replicates is identical to a blocked design where the block size is greater than 2^k
- See Example 7.1 on page 309
- Make sure to randomly assign treatments within a block (or replicate)
- Each block contains all 2^k treatment combinations
- Simplest experiments to design and analyze

A Simple Example of Confounding

- Consider a 2^2 experiment with factors A and B
- The experiment is run in two blocks. Block 1 contains the treatments a and ab ; block 2 contains the treatments (1) and b
- Write an estimator (contrast) for the block effects
- Construct the contrasts for the effects A , B and AB

Block 1
 a, ab

Block 2
 $(1), b$

Contrast
 $\frac{a+b}{blocks} - \frac{(1)+b}{blocks}$

<u>A</u>	<u>B</u>	<u>trts</u>	<u>A</u>	<u>B</u>	<u>$A \times B$</u>
-	-	(1)	-	-	+
+	-	a	+	-	-
-	+	b	-	+	-
+	+	ab	+	+	+

$$\text{Contrast}_A = (a+b) - (1+b)$$

$$\text{Contrast}_B = (b+ab) - ((1)+ab)$$

$$\text{Contrast}_{AB} = (ab+1) - (a+b)$$

Block treatment and main effect A are confounded

A Simple Example of Confounding, continued

Block Size $< 2^k$

- Often the block size is 2^p for $k > p$. This design is called incomplete because all the treatment combinations can not be performed in each block
- Requires an intelligent method to assign treatments to blocks
- These designs are run in two blocks, four blocks, eight blocks, etc. 2^p
- Confounding usually occurs in these designs. Confounding occurs when information about certain treatment effects can not be distinguished from the block effect.