

Printout

Sunday, October 10, 2021 11:22 AM

Section 1

MANE 6313

Subsection 1

Week 8, Module B

Student Learning Outcome

- Select an appropriate experimental design with one or more factors,
- Select an appropriate model with one or more factors,
- Evaluate statistical analyses of experimental designs,
- Assess the model adequacy of any experimental design, and
- Interpret model results.

Module Learning Outcome

Describe new block generation technique.

Designing a Blocked Experiment

- Define a linear combination

$$L = \alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_k x_k$$

↙ one generator

- We say that L is the defining contrast
- Represent the treatment levels (x_i) as 0 (low level) and 1 (high level) and $\alpha_i = 0$ or 1
- Choose an effect to confound with blocks → highest order interaction
- Calculate the quantity $L \bmod 2$ for each effect
- Examine a 2^3 example in two blocks

$$x_1 = A \quad x_3 = C$$

$$x_2 = B$$

Two Block Example

x_1	x_2	x_3	L	$L \bmod 2$	(ABC)	A	B	C	ABC
0	0	0	0	0	(1)	-	-	-	-
1	0	0	1	1	0	+	-	-	+
0	1	0	1	1	1	-	+	-	+
1	1	0	2	0	2	+	+	-	-
0	0	1	1	1	3	-	-	+	+
1	0	1	2	0	4	+	+	+	-
0	1	1	2	0	5	-	+	+	+
1	1	1	3	1	6	+	+	+	+

$$\frac{L \bmod 2 = 1}{a, b, c, abc}$$

$$\frac{L \bmod 2 = 0}{(1), ab, ac, bc}$$

$$\frac{ABC = +}{a, b, c, abc}$$

$$\frac{ABC = -}{(1), ab, ac, bc}$$

Reconciling the Two Block Generation Methods

Summary

- Two techniques have been presented to design experiments in two blocks
- The block that contains (1) is the *principal block*
- If you can replicate the experiment, use *partial confounding* to improve your design. For each replicate, select a different effect to generate the blocks. Thus, some information is available for each variable (more difficult to correctly design and analyze).