

Printout

Sunday, October 24, 2021 3:46 PM

Section 1

MANE 6313

Subsection 1

Week 9, Module D

Student Learning Outcome

- Select an appropriate experimental design with one or more factors,
- Select an appropriate model with one or more factors,
- Evaluate statistical analyses of experimental designs,
- Assess the model adequacy of any experimental design, and
- Interpret model results.

Module Learning Outcome

Analyze a one-quarter fraction.

The quarter-fraction of the 2^k Design

- You must select two generators, $I = P$ and $I = Q$
- Don't forget the generalized interaction. The *complete defining relation* is $I = P = Q = PQ$
- There are four possible fractions formed by the combinations of $(\pm P, \pm Q)$
- The principal fraction is defined by $I = P = Q$
- The complementary fractions are $I = -P = Q$, $I = P = -Q$, $I = -P = -Q$

Quarter Fraction Example – Problem 8.11

8.11 An article in *Industrial and Engineering Chemistry* ("More on Planning Experiments to Increase Research Efficiency," 1970, pp. 60–65) uses a 2^{5-2} design to investigate the effect of A = condensation temperature, B = amount of material 1, C = solvent volume, D = condensation time, and E = amount of material 2 on yield. The results obtained are as follows:

$$e = 23.2 \quad ad = 16.9 \quad cd = 23.8 \quad bde = 16.8 \\ ab = 15.5 \quad bc = 16.2 \quad ace = 23.4 \quad abcde = 18.1$$

- (a) Verify that the design generators used were $I = ACE$ and $I = BDE$.
- (b) Write down the complete defining relation and the aliases for this design.
- (c) Estimate the main effects.
- (d) Prepare an analysis of variance table. Verify that the AB and AD interactions are available to use as error.
- (e) Plot the residuals versus the fitted values. Also, state the conclusions.

2⁵⁻²

Sunday, October 24, 2021

3:50 PM

2 generators: $I = A^c E$, $I = B^d E$
 $E = AC$, $E = BD$ \times

$I = \cancel{A}^c E$, $I = \cancel{B}^d E$

$A = cE$, $B = dE$ [full factorial in CD]

	A	B	C	D	E	$A=CE$	$B=DE$	treatment
1	C	D	E					
2	-1	-1	-1	1	1	1	1	ab
3	1	-1	-1	-1	1	-1	1	bc
4	-1	1	-1	1	-1	1	-1	ad
5	1	1	-1	-1	-1	-1	-1	cd
6	-1	-1	1	-1	-1	-1	-1	e
7	1	-1	1	1	1	-1	-1	ace
8	-1	1	1	-1	1	1	1	bde
9	1	1	1	1	1	1	1	abcde
10								

Screen clipping taken: 10/24/2021 3:53 PM

$$I: ACE = BDE = ABCD \cancel{E}$$

$$I: ACE = BDE = ABCD$$

$$l_A: A(I + ACE + BDE + ABCD)$$

$$: A + A^2CE + ABD + A^2BCD$$

$$: A + CE + ABDE + BCD$$

$$l_{AB}: AB(I + ACE + BDE + ABCD)$$

$$: AB + A^2BCE + AB^2DE + A^2B^2CD$$

$$: AB + BCE + ADE + CD$$

$$\binom{5}{2} = \frac{5!}{2!(5-3)!} = \frac{5 \cdot 4 \cdot (5-3)!}{2! \cdot (5-3)!} = 10 \text{ 2-factor interactions}$$