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For studying k variables in N runs, all 2*~? designs of maximum resolution are not equally
good. In this paper the concept of aberration is proposed as a way of selecting the best designs
from those with maximum resolution. Algorithms are presented for constructing these mini-
mum aberration designs.
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1. INTRODUCTION

Fractional factorial designs—especially the two-
level designs—are useful in a variety of experimental
situations, for example, (i) screening studies in which
only a subset of the variables is expected to be impor-
tant, (ii) research investigations in which certain
interactions are expected to be negligible and (iii)
experimental programs in which groups of runs are to
be performed sequentially, ambiguities being resolved
as the investigation evolves (see Box, Hunter and
Hunter, 1978). The literature on fractional factorial
designs is extensive. For references before 1969, see
the comprehensive bibliography of Herzberg and Cox
(1969). For more recent references, see Daniel (1976)
and Joiner (1975-79).

A useful concept associated with 2*~P fractional
factorial designs is that of resolution (Box and
Hunter, 1961). A design is of resolution R if no c-
factor effect is confounded with any other effect con-
taining less than R — ¢ factors. For example, a design
of resolution III does not confound main effects with
one another but does confound main effects with
two-factor interactions, and a design of resolution IV
does not confound main effects with two-factor inter-
actions but does confound two-factor interactions
with one another. The resolution of a two-level frac-
tional factorial design is the length of the shortest
word in the defining relation. Usually an experimen-
ter will prefer to use a design which has the highest
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possible resolution. But for studying variables in N
runs, all 2*”? designs which have maximum resolu-
tion are not equally good. (Note: N =2*"2)) The
purpose of this paper is to provide a method for
selecting a best subset of designs from the set of 2~ 7
fractional factorial designs of highest resolution.
“Best” is defined in terms of the concept of aberration.

2. AN EXAMPLE

To illustrate the main ideas, let us consider an
example. Suppose with a two-level fractional factorial
design in N = 32 runs a chemist wishes to study the
joint effect of k = 7 variables such as reaction temper-
ature, pH and concentration on the yield of a particu-
lar chemical reaction. If the chemist has prior
knowledge concerning the possible importance of cer-
tain main effects and interactions, a 272 design of
resolution III (for example with generating relations
6 = 12 and 7 = 13) might be better than one of reso-
lution IV. Greenfield (1976, 1978) has solved this type
of problem in which all the main effects and inter-
actions to be estimated are specified. Usually such
prior knowledge, however, is not sufficiently sharp to
warrant such a choice. In this paper, therefore, we
consider the more common situation in which prior
knowledge is diffuse concerning the possible greater
importance of certain specific main effects relative to
others, certain specific two-factor interactions relative
to others, and similarly for higher-order interactions.
We will assume that the experimenter believes ini-
tially that main effects are more important than two-
factor interactions, that two-factor interactions are
more important than three-factor interactions, and so
forth. The situation thus defined is one of great practi-
cal importance to experimenters. In these circum-
stances it is sensible to select a design that has
maximum resolution.
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TABLE 1—Three choices for a 2}y % fractional factorial design for seven variables 1,2, 3,4, 5, 6,7 in
32 runs. Entries underlined with a tilde () are to be regarded as boldfaced characters.

Desian {3) (b)
vestg \ay \oJ

6=123,7=234

1=1236-2347-1467

Generators

Defining relation

Strings of aliased 12+36 12436

two-factor interac- Tminz

tions (assuming 13+26 13426

three-factor and 14+67 14+57

higher-order inter- o

actions are negli- 17+46 15+47

gible) 24+37 16423
27434 17445
16423447

It can be shown that R =1V is the maximum
attainable resolution for a 272 design (we say more
about this point in Section 4). The chemist, however,
will probably regard some 2];2 designs as being
better than others. For instance, consider designs (a),
(b) and (c) in Table 1, all of which are resolution IV.
For designs of resolution IV, unconfounded estimates
are obtained for all main effects if one assumes that
three-factor and higher-order interactions are negli-
gible. If one makes this assumption, Table 1 provides
a summary of these designs with regard to confound-
ing among two-factor interactions. Unconfounded
estimates are obtained for all two-factor interactions
not shown in this table. That is, that part of the
abbreviated confounding pattern is presented that is
concerned with two-factor interactions for the situa-
tion in which it is assumed that three-factor and
higher-order interactions are negligible. There is the
greatest amount of confounding in design (a) and the
least in {c). Therefore, on the basis of this analysis,
design (c) is the best of the three.

The three word lengths in the defining relation for
design (a) are all four, that is, the word length pattern
is {4, 4, 4}. For design (b) it is {4, 4, 6}, and for design
(c) it is {4, 5, 5}. Notice the defining relation for design
(c) has only one word of length four, whereas (b) has
two and (a) has three. Thus, (c) is the design which
minimizes the number of words in the defining rela-
tion that are of minimum length. We call it a minimum
aberration design. When comparing two designs using
resolution as the criterion, one considers the lengths
of the shortest word in each defining relation. If these
lengths are equal, the two designs are regarded as
being equivalent. With aberration as the criterion,
however, one continues to examine the length of the
next shortest word in each defining relation until one
design is ranked superior to the other. With a resolu-
tion R design, main effects are confounded with inter-
actions of order R — 1, two-factor interactions are
confounded with interactions of order R — 2, and so
forth. Given that resolution is maximized and equal

6=123,7=145
1=1236=1457=234567

{c)

6=1234 ,7=1235

1=12346=12357=4567

45167
46+57
47456

to R, Minimizing aberration ensures that a design
has the minimum number of words of length R,,.
which, in turn, means that the smallest number of
main effects will be confounded with interactions of
order R, — 1, the smallest number of two-factor
interactions will be confounded with interactions
of order R,.. — 2, and so forth. Hence, the concept
of aberration is a natural extension of resolution.

In Section 3 we generalize the ideas presented
above, giving a more precise definition of aberration
and presenting a practical algorithm for construction
of such designs. In Section 4 the problem of estimat-
ing bounds for the maximum attainable resolution is
discussed.

3. AN ALGORITHM

To generalize the setup illustrated in Table 1, sup-
pose that a 2% ? design is constructed by first writing
down a full two-level factorial design in k — p factors
and then defining the column vectors for p additional
factors by associating them with certain interaction
columns involving the first k — p factors. Each such
assignment results in a word (generator) equal to the
identity I. For example, for design (a) the generators
are 1236 and 2347. Taking products of the p genera-
tors one at a time, two at a time, etc., gives the
defining relation, which has 2?7 — 1 words plus I. For
fixed N and k, and hence p, the problem is to select
the best 2% P design. As always, we must carefully
consider the question of what we mean by “best”.

Suppose two 2¢~7 designs (s) and (t) of maximum
resolution R, are to be compared, and their defining
relations have these word-length patterns:

(S): {Rﬁax(Rmax + I)S1(Rmax + 2')S2 t (Rmax + m)s"'}
(t): {R;?ax(Rmax + l)u(Rmax + 2)t2 Tt (Rm'dx + n)t"}_

Determine the first subscript i such that s; # ¢t;. If
s; < t;, then design (s) is the better design; otherwise
(t) is the better design. We call designs for fixed N and
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k that result from this procedure designs of minimum
aberration. [Note: Possibly, though very rarely, two
designs will have the same word length pattern even
though one defining relation will not be a relabeling
of the other (see Draper and Mitchell, 1968, 1970). In
other words, the word length pattern does not
uniquely define a design.]

We will now consider how this principle can be
employed in practice to construct useful designs. The
National Bureau of Standards tabulation of two-level
fractional factorial designs (Connor and Zelen, 1959),
which makes use of a similar criterion, indicates in
this statement one of the kinds of problems that must
be addressed: “Although considerable effort was
made to find solutions which have the maximum
number of two-factor interactions confounded [only]
with three-factor and higher-order interactions, other
solutions may exist having a larger number of
measurable two-factor interactions.” Criteria to be
used in a related problem are suggested by Addelman
(1969). In that paper it is implicit that consideration
of resolution alone may not yield a unique design
apart from relabeling.

Direct Approaches

The most direct approach is to write down all
possible sets of p nonisomorphic generators (that is,
sets of generators which are merely relabelings of
others are not considered), calculate the associated
word length patterns and select a choice of generators
that will give a minimum aberration design. Actually,
as shown in Appendix A, we only need to consider
generators which contain all k variables. To establish
the equivalence of two distinct choices of generators
leading to the same word length pattern, it is possible
to employ the “letter pattern comparison” test of
Draper and Mitchell (1970). Instead of examining the
p generators directly, it suffices to consider only the p
higher-order interactions assigned to the last p var-
iables. The word length pattern can be constructed by
adding one to the length of each of these interactions,
and by adding ! to the length of each of their products
taken [/ at a time.

An advantage to this direct approach is that it is
straightforward and readily programmable. Disad-
vantages are first that one must check all the noniso-
morphic choices of assignments before the best word
length pattern can be established, and second that this
purely computational procedure yields no insight into
the problem. In particular, although counterexamples
to conjectures can be discovered via this method, it is
impossible to prove any general results.

Let us now consider an alternative direct approach
that makes use of results of Brownlee, Kelly and
Loraine (1948) and Burton and Connor (1957) (see
Appendix B). One can examine all nonisomorphic

choices of nonnegative integrals t's satisfying (B3),
and then use (B4) to construct the corresponding
word lengths and the associated word length patterns.
Equations designated with B are in Appendix B. John
(1966) has shown that when using (B4) all possible
assignments of the s to specific generators and their
products must be considered. Different assignments
may result in different word length patterns. This
approach is unwieldy and its advantages are not
apparent. Its great disadvantage, similar to the
difficulty associated with the first approach, is that all
nonisomorphic choices of the ¢’s must be considered
before the best word length pattern is determined.

A Practical Algorithm

A more fruitful approach is to consider the word
length patterns themselves and construct an algo-
rithm as follows. Here we initially assume the maxi-
mum resolution R, to be known and consider only
words with lengths not less than R,,,,. (We return to
this point in Section 4.) Choose word length patterns
satisfying conditions (B1) and (B2). Then use (BS)
to solve for ) ¢ and check if this is compatible with
(B3). Any word length pattern satisfying all these
necessary conditions is a candidate for an actual word
length pattern corresponding to a 2% ? design. For
each set (possibly more than one) of t-values satisfying
(B3) and (BS5), the generators for the design are
computed from (B4). As discussed in the last
paragraph, the use of (B4) requires that all possible
assignments of the r’s to particular generators and
their products be considered. Those assignments
which result in a word length pattern other than the
one with which we began must be discarded. For
values of k < 11 this has presented no great difficulty.
However for a general 2577 design, a specific sub-
routine serving this purpose as well as computer
assistance is required.

The biggest advantage to this approach is that one
need not check all possible word length patterns.
Once an actual word length pattern has been estab-
lished, by referring to Connor and Zelen (1959), say,
or by writing out a set of generators and calculating
the associated word length patterns, it suffices to con-
sider only those word length patterns which by our
criterion correspond to better designs. Elimination of
all such possibilities then proves that the original
design is best. If one begins with a design thought to
be best, verification via this approach or discovery of
a better design will not require a great deal of compu-
tational effort. This is, of course, equivalent to begin-
ning at the theoretically best possible word length
pattern and examining successively worse patterns
until a minimum aberration design is found. The
designs displayed in Table 12.15 of Box, Hunter and
Hunter (1978) were obtained in this manner.
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4. BOUNDS FOR MAXIMUM RESOLUTION

We now consider for given N and k (or equiva-
lently k and p), the problem of determining R,,,,, the
maximum possible value of the resolution. This
discussion will result in a modification of the last
algorithm. For p = 1 it is obvious that R, = k. For
p = 2, Robillard (1968) has shown that R, = [2k/3],
where [x] is the greatest integer not exceeding x.
More general bounds for s*~7 designs, where s is
prime, have been obtained by Fujii (1976). Setting
s = 2 and assimilating the above results, we have the
following statement. The maximum resolution attain-
able for a 2*7? design satisfies these equalities and
inequalities, depending on the value of p:

Rox=k ifp=1
= [2k/3} ifp=2
=21y ifr=0,1

<2 g [ - ) - 1)
ifr=213..2"1'-1
ifr=2r"1 .22
(1)
where k=¢q(2* —1)+r, 0<r<2?-2 g is an
integer. (Fujii states that the last inequality of (1)
holds for r=2F"1 4+ 1, ..., 2P — 2, which for p =2
becomes r = 3, ..., 2, which is nonsensical. Although
it is known that R,,,, = [2k/3] when p = 2, the above
reordering avoids any possible confusion.)

After reading an original draft of this paper, B. H.
Margolin suggested that another bound for R,
could probably be obtained by considering the dual
problem of the minimum number of observations
required for a design to have resolution R. Following

this suggestion and generalizing the work of Margo-
lin (1969) and Webb (1968), we obtain the bound

vey (i) (";11”, @)

where N = 277 is the number of observations, H is
the largest integer such that N > YL, (¥) and I is the
indicator function. A proof of (2) is given in
Appendix C.

Table 2 displays a comparison of the R,,, bounds
from (1) and (2) for various values of k and p. It is
seen that (1) is better for small values of p whereas (2)
is better for large values of p. This suggests that we
adopt the bound

<277 1g + [r/2)

Ry <1+2H+1

Rppax < minimum[R,,,, bound (1), R, bound (2)].
(3)

Table 2 also compares K,,, and the R,,,, bound ob-
tained from (3). Here the asterisk (*) denotes those

values of k and p for which the R,,,, bound exceeds
R,..- The table indicates that the bound given by (3)
is relatively sharp.

The discussion of the algorithm in Section 3
assumed R, to be known. This was necessary be-
cause a minimal word length was required before
possible word length patterns could be investigated.
Results (1), (2) and (3) permit the removal of this
restriction. Given only k and p, one can determine the
best word length pattern as follows. Let B denote the
R,.x bound. Let R =B and use the algorithm in
Section 3 to find, if possible, the best word length
pattern. If there is no solution, set R=B — 1 and
proceed as before. Continue in this manner until the
best word length pattern is found. Figure 1 summar-
izes this procedure.

To illustrate the above procedure we return to the
27y example. In this case the values of k and p are
small so only a few calculations will be required, but
in general the computations become lengthy and
computer assistance is required. With k=7 and
p=2, (1) gives B=R,,=4 and (Bl) yields
Y. w=14. The only word length patterns satisfying
both of these conditions are {4, 4, 6} and {4, 5, 5}. We
first examine {4, 5, 5} because it is the “best” available
word length pattern (see Section 3). Exactly two
words have odd length so that (B2) holds. From (B3)
and (B5) we calculate ) t=7 and ) t* = 17 from
which it follows that the £’s must take on the values 2,
2 and 3. Consider the assignment (1) =t(2) =2,
t(12) = 3. Employing (B4) we see that the generators
have lengths w(l)=t(1) + ¢(12) =5, w(2) = ¢(2) +
t(12) =35, and their product has length w(12)=
(1) + 1#(2) = 4. The generators, up to a relabeling of
factors, are W(1) = 12346 and W(2) = 12357. These
choices satisfy the conditions imposed on their
lengths and on the length of their product. The deter-
mination of the generators also follows from Figure 2,
appropriately modified for the present example. The
same generators are obtained using ¢(1) = t(12) = 2
and #(2) = 3, the only other possible assignment of
the ¢’s.

5. SUMMARY

The statistical literature gives the curious impres-
sion that one should only worry about confounding
for fractional factorials. However, if a full 2* design is
performed and the true, but unknown, response func-
tion is quadratic, the corresponding quadratic
coefficients are confounded with the mean. Whether it
is prudent to run a full or fractional design depends
on such factors as the object of the investigation, the
size of the budget, and plausible forms of the true
response function. For a 2¥7? design, it is not com-
pletely satisfactory to consider the confounding pat-
tern by itself because it ignores second-order
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TABLE 2—A comparison of R, and the R, bounds obtained from equations (1), (2) and (3). The
asterisk (*) indicates that R, bound (3) > R .

R R

R R R

max max max max max max
bound bound bound bound bound bound

kK p (1) (2) (3) max k p (1) (2) (3) max
5 2 3 3 3 3 12 8 5 3 3 3
6 3 3 3 3 3 12 7 5 4 4 4
6 2 4 4 4 4 12 6 5 4 4 4
7 4 3 3 3 3 12 5 5 5 5 5
7 3 4 4 4 4 12 4 6 6 6 6
7 2 4 5 4 4 12 3 6 8 6 6
8 4 4 4 4 4 12 2 8 9 8 8
8 3 4 4 4 4 13 9 6 3 3 3
8 2 5 5 5 5 13 8 6 4 4 4
9 5 4 3 3 3 13 7 6 4 4 4
9 4 4 4 4 4 13 6 6 5 5 4%
9 3 4 5 4 4 13 5 6 6 6 4
9 2 6 6 6 6 13 4 6 7 6 6
10 6 4 3 3 3 13 3 6 8 6 6
10 5 4 4 4 4 13 2 8 9 8 8
10 4 5 5 5 4* 14 10 6 3 3 3
10 3 5 5 5 5 14 9 6 4 4 4
10 2 6 6 6 6 14 8 6 4 4 4
1 7 5 3 3 3 14 7 6 5 5 4*
11 6 5 4 4 4 14 6 6 6 6 5*
11 5 5 4 4 4 14 5 6 7 6 5%
11 4 5 6 5 5 14 4 7 8 7 6*
11 3 6 7 6 6 14 3 7 10 7 7
1 2 7 ] 7 7 14 2 9 1 9

quadratic and higher-order effects. In practice one
must view the confounding pattern against the back-
drop of many other factors. What is usually done is to
concentrate on a careful examination of the con-
founding pattern itself, while in some fashion keeping
in mind these other factors. But it can be tedious to
work out the complete confounding patterns for dif-
ferent candidate designs and difficult to compare
them in order to choose the “best” one. In many
circumstances it is reasonable to consider abbreviated
rather than complete confounding patterns because
this saves time. Moreover it may be more sensible
anyway because it is not logical in general to be
worrying about the possible influence of kth,
(k — 1)th, order interactions while ignoring
second-order quadratic effects. By examining ab-
breviated confounding patterns, one essentially eli-
minates from consideration the high-order
interactions. Taking this process of simplifying the

selections of 2”7 designs to a useful limit, one arrives
at a concept like resolution, which does not require
the writing out of even the abbreviated confounding
patterns but essentially only the defining relations
themselves.

The point raised in the present paper is that using
resolution alone may short circuit the selection
process too severely in some situations because all
designs of the same resolution are not equally good.
The concept of aberration allows one to more closely
approximate what should ideally be done in compar-
ing 277 designs, with not much more work than
considering resolution alone. As discussed in the
body of this paper, the concept of aberration is a
natural extension of resolution. We have presented
three algorithms for generating minimum aberration
designs. It is not clear which, if any, can be extended
to s*~7 designs, where s is a prime number greater
than two.

TECHNOMETRICS ©, VOL. 22, NO. 4, NOVEMBER 1980
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FIGURE 1. Summary of algorithm for construction of minimum aberration 2*™? fractional factorial

designs (appropriate equation numbers are given in parentheses).

Given N and k

(k and p)

Cgmput?J B 3
oun
P2y (3)

Eliminate
word length pattern
from consideration

Set new B =
- none old B-1
Find "best" word length -
pattern with resolution
= B and sw satisfied
(B1)
Check number of )
even and odd words not compatible
(B2)
Compute 5t th 1
pu - not compatible
(B3) (B5)
r X . Any minimum
Compute a possible if none aberration design(s)
set of t's found?
(83) (BS)
l if none

Consider next nonisomor-
phic assigment of t's
to specific generators
A and their products

} not

Compute generators and consistent
corresponding word
length pattern
(B4)

Minimum
aberration
design

t(1) = 2

t(2) =1

v t(3) =0

t(12) =1

t{13) = 0

t(23) =1

t{123) = 1
W(1) = 1234
W(2) = 3456

u(3) = 45 Wi

FIGURE 2. An illustration of the definition of ¢(i, -+ i,). Entries
underlined with a tilde () are to be regarded as boldface characters.
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APPENDIX A

Lemma: The best word length pattern corresponds
to a defining relation in which all k factors are
present, that is, all of the first k — p factors are used in
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the assignment of higher-order interactions to the last
p factors.

Proof: Given k and p (we need not be given R), we
want to show that any word length pattern that does
not use all of the first k — p factors in the assignment
of higher-order interactions to the last p factors is
inferior to some word length pattern that uses all of
the factors. Let the first word length pattern under
consideration be denoted by R*(R + 1)*/(R + 2)*---
(R + m)y*, where a, >0, a; >0 for 1 <i<m. Add
exactly one of the unassigned factors to a generator
and examine the resulting word length pattern. The
length of that generator will increase by one. Also,
since this added factor appears only in one genera-
tor, cancellation because of multiplication is not pos-
sible and all products including that generator will
have the word length increased by one. Thus the
resulting word length pattern is of the form
RY(R + 1) (R + m)’(R + m + 1)b+*  where
bo<ay, b;=0 for 1<i<m+1l. If by<ag
the second pattern is better. If by, = a; we have
bo=ae, by =ay,...,b;=a;, b;,; <aj; for some j
satisfying 1 <j < m, from which we conclude that the
second pattern is better. Continuing to add the unas-
signed factors one at a time to the generators com-
pletes the proof.

APPENDIX B

The following theorems hold if all k variables
appear in the defining relation.

Theorem Bl: Let wy, ..., w,, denote the lengths of
m = 27 — 1 words. Then the following are two neces-
sary conditions that these words correspond to a
defining relation of a 2¥~? design:

Yow, =271k, (B1)
i=1

Either the w’s all are even or

exactly 277! of them are odd. (B2)

The conditions of Theorem B1 do not require that
the lengths of particular generators and their pro-
ducts be specified. Before we state necessary and
sufficient conditions for the existence of a defining
relation for which the lengths of the generators and
their products are given we must introduce some
notation.

Let iy, ..., i, be s integers such that 0 < i; < - <
is < p + 1. Denote the product of the i,th, i,th, ...and
isth generator by W(i, --- i,) and let the length of the
word W(i, - i;) be denoted by w(i, - i;). Then W(i)
is the ith generator and there are exactly 2° — 1 words
corresponding to the collection of 2# — 1 symbols (iy,
..., ig) which we will denote by S. Also introduce the
symbols 0=0(i;, ..., i) and E = E(iy, ..., i) to
denote the collection of symbols which contain an
odd number of indices from (iy, ..., i), and the collec-
tion of symbols which contain none or an even

number of indices from (i, ..., i), respectively. Let-
ting n(0) and n(E) denote the number of symbols in 0
and E it is easily seen that n(0)=27"' and
n(E)y=2r"1-1.

Finally let ¢t =1t(i;, --- i;) denote the number of
letters which occur in all of the s generators W(i,), ...,
W(i,), but not in the remaining generators. Figure 2
illustrates this definition.

The t’s are the number of letters in the basic dis-
joint sets from which it follows that

;wf~m=k (B3)

Furthermore any set of s which are positive integers
or zero and satisfy (B3) corresponds to a construc-
tible defining relation involving k factors. These re-
sults are also stated within the following theorems
from Burton and Connor (1957).

Theorem B2: If the w’s satisfy the 27 — 1 equations
%w(il " Jp) —gwm ) =27 My o ),
where Y o t+ Yzt =k in the sense of implying f's
which are nonnegative integers, then the defining
relation exists, Furthermore, from the 27 —1

equations
8y = jp) = wliy =+ i) (B4)
0z - i)
it follows that the f’s are sufficient to construct the
defining relation, and the defining relation corre-
sponding to a set of f’s is unique (apart from
relabeling).

Theorem B3: A necessary condition for the defining
relation to exist is that there are k or fewer positive
integers whose sum is k and whose squares add to
27PF2 Y w? — k2, that is

Y wr=20"3(Y 12 + k?). (B5)

APPENDIX C

Lemma: A 2*~7 design of even resolution R = 2]
must contain at least Y :2§ (%) + (4-1) runs.

(Margolin (1969) and Webb (1968) independently
established this result for /= 2. Below we modify
Webb’s proof only slightly to obtain the above
generalization.)

Proof: Let XV, ..., X\¥ be the column vectors
associated with the k main effects, let X, ..., X{3) be
the column vectors associated with the (%) two-factor
interactions, ..., let X{™", ..., X{TV be the column
vectors associated with the (%, )(/ — 1)th-factor inter-
actions, and define the matrix X by

— 1 1 2 (2)
X = [X{, .., X0 X, X

()

1-1
LLX¢h X

(I-1)

(<0
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Let Zy, Z,, ..., Z ) represent the column vectors
associated with the grand mean and the interactions
of the first factor with the (}1) (/ — 1)th-factor inter-
actions which do not include the first factor. Define
the matrix Z by Z = [Z,, Z,, ..., Z; ,]. The col-
umns of the matrix [X, Z] are linearly independent by
the orthogonality of the vectors.

Now suppose the design contains N < Y'iZ}
)+ ((}) runs. Select any vectors W, ...,
Wy _si.; ¢ such that the matrix [X, W] is of rank N.
Here we have defined W=[W;, ..., Wy_vi1n]
and implicitly used N > Y124 (¥). Since [X, W] is of
full rank there exist matrices H, and H, such that
Z =XH, + WH,. We next show H; = 0. Write the
model for the design as EY = XB, + WB, + ZB;
where Y is the N x 1 vector of responses, B, is the
(3121 (4)) x 1 vector of parameters to be estimated,
and B, and B; are respectively (N — Y/28 (%) x 1
and ((}-{)+ 1) x 1 vectors. Since EB; =B, and
B, =JY for some matrix J we have EJY =
J(XB, + WB, + ZB;) = B,. It follows that JX =1,
JW =0 and JZ = 0. But

= JXH‘ + JWHZ = IHl + 0H2 - H1

so that we must have H, =0 and Z = WH,. This
contradicts the assumption N <125 () + (1=1)
since there are more linearly independent Z’s than
there are linearly independent W’s.

Theorem: Let N =27 let H be the largest
integer such that N > Y /L, (¥) and let I be the indica-
tor function. Then

H
Rom <1+2H+I|N > Y )+ (%" (C1)
i=0

Proof: Suppose R.,=1+ 2l is odd. Then the
parameters estimated include the grand mean, the &
main effects, the (%) two-factor interaction, ..., and
the (¥) I-factor interactions. This requires a minimum
of 1+(f)+()+ -+ ({)=Xi=o()) <N runs.
Then! < Hand R, =1 + 2] <1+ 2H so that (C1)
holds. Now suppose R,,.,= 2! is even. From the

definition of H we have H > — 1. If H = | — 1, then
Ro..=21=2+2H and (Cl) is satisfied since
N =328 () + (5-1) by the preceding lemma. If
H > [ then R, = 2] < 2H and (C1) holds.
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