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For studying k variables in N runs, all 2’-p designs of maximum resolution are not equally 
good. In this paper the concept of aberration is proposed as a way of selecting the best designs 
from those with maximum resolution. Algorithms are presented for constructing these mini- 
mum aberration designs. 
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1. INTRODUCTION 

Fractional factorial designs--especially the two- 
level designs-are useful in a variety of experimental 
situations, for example, (i) screening studies in which 
only a subset of the variables is expected to be impor- 
tant, (ii) research investigations in which certain 
interactions are expected to be negligible and (iii) 
experimental programs in which groups of runs are to 
be performed sequentially, ambiguities being resolved 
as the investigation evolves (see Box, Hunter and 
Hunter, 1978). The literature on fractional factorial 
designs is extensive. For references before 1969, see 
the comprehensive bibliography of Herzberg and Cox 
(1969). For more recent references, see Daniel (1976) 
and Joiner (1975-79). 

A useful concept associated with 2k-p fractional 
factorial designs is that of resolution (Box and 
Hunter, 1961). A design is of resolution R if no c- 
factor effect is confounded with any other effect con- 
taining less than R - c factors. For example, a design 
of resolution III does not confound main effects with 
one another but does confound main effects with 
two-factor interactions, and a design of resolution IV 
does not confound main effects with two-factor inter- 
actions but does confound two-factor interactions 
with one another. The resolution of a two-level frac- 
tional factorial design is the length of the shortest 
word in the defining relation. Usually an experimen- 
ter will prefer to use a design which has the highest 
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possible resolution. But for studying variables in N 
runs, all 2k-p designs which have maximum resolu- 
tion are not equally good. (Note: N = 2k-p.) The 
purpose of this paper is to provide a method for 
selecting a best subset of designs from the set of 2k-p 
fractional factorial designs of highest resolution. 
“Best” is defined in terms of the concept of aberration. 

2. AN EXAMPLE 

To illustrate the main ideas, let us consider an 
example. Suppose with a two-level fractional factorial 
design in N = 32 runs a chemist wishes to study the 
joint effect of k = 7 variables such as reaction temper- 
ature, pH and concentration on the yield of a particu- 
lar chemical reaction. If the chemist has prior 
knowledge concerning the possible importance of cer- 
tain main effects and interactions, a 27-2 design of 
resolution III (for example with generating relations 
6 = 12 and 7 = 13) might be better than one of reso- 
lution IV. Greenfield (1976,1978) has solved this type 
of problem in which all the main effects and inter- 
actions to be estimated are specified. Usually such 
prior knowledge, however, is not sufficiently sharp to 
warrant such a choice. In this paper, therefore, we 
consider the more common situation in which prior 
knowledge is diffuse concerning the possible greater 
importance of certain specific main effects relative to 
others, certain specific two-factor interactions relative 
to others, and similarly for higher-order interactions. 
We will assume that the experimenter believes ini- 
tially that main effects are more important than two- 
factor interactions, that two-factor interactions are 
more important than three-factor interactions, and so 
forth. The situation thus defined is one of great practi- 
cal importance to experimenters. In these circum- 
stances it is sensible to select a design that has 
maximum resolution. 
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TABLE l-Three choicesfor o 2:; ’ fractional factorial design for seven variables 1, 2, 3, 4, 5, 6, 7 in 
32 runs. Entries underlined with a tilde () are to be regarded us boldfaced characters. 

Design (a) (b) (cl 

Generators 6=123,7=234 6=123,7=145 6=1234 7=1235 
- --I I b-w _ -__ 1 -_I 5 ."--)-. -vb.- 

Defining relation I=l236=2347=1467 1=1236=1457=234567 1=12346=12357=4567 
_ __-_ __-- __^._ - -em-. ---w --.. 

Strings of aliased 12+36 12+36 -- -- 
two-factor interac- 
tions (assuming 13+26 13+26 -- -- 
three-factor and 14+67 14+57 
higher-order inter- 

-- -- 

actions are neali- 17+46 15+47 -- - .- 

7 _ -_-w... _5^ II m--m 

45+67 -- 
46+57 -- 
47+56 -- 

gible) 24t37 16+23 -- -- 
27t34 17+45 -- -- 
16+23+47 --- 

It can be shown that R = IV is the maximum 
attainable resolution for a 2’-’ design (we say more 
about this point in Section 4). The chemist, however, 
will probably regard some 2:,’ designs as being 
better than others. For instance, consider designs (a), 
(b) and (c) in Table 1, all of which are resolution IV. 
For designs of resolution IV, unconfounded estimates 
are obtained for all main effects if one assumes that 
three-factor and higher-order interactions are negli- 
gible. If one makes this assumption, Table 1 provides 
a summary of these designs with regard to confound- 
ing among two-factor interactions. Unconfounded 
estimates are obtained for all two-factor interactions 
not shown in this table. That is, that part of the 
abbreviated confounding pattern is presented that is 
concerned with two-factor interactions for the situa- 
tion in which it is assumed that three-factor and 
higher-order interactions are negligible. There is the 
greatest amount of confounding in design (a) and the 
least in (c). Therefore, on the basis of this analysis, 
design (c) is the best of the three. 

The three word lengths in the defining relation for 
design (a) are all four, that is, the word length pattern 
is (4, 4, 4). For design (b) it is (4, 4, 61, and for design 
(c) it is {4,5,5}. N otice the defining relation for design 
(c) has only one word of length four, whereas (b) has 
two and (a) has three. Thus, (c) is the design which 
minimizes the number of words in the defining rela- 
tion that are of minimum length. We call it a minimum 
aberration design. When comparing two designs using 
resolution as the criterion, one considers the lengths 
of the shortest word in each defining relation. If these 
lengths are equal, the two designs are regarded as 
being equivalent. With aberration as the criterion, 
however, one continues to examine the length of the 
next shortest word in each defining relation until one 
design is ranked superior to the other. With a resolu- 
tion R design, main effects are confounded with inter- 
actions of order R - 1, two-factor interactions are 
confounded with interactions of order R - 2, and so 
forth. Given that resolution is maximized and equal 

to &ax, minimizing aberration ensures that a design 
has the minimum number of words of length R,,,, 
which, in turn, means that the smallest number of 
main effects will be confounded with interactions of 
order R,,, - 1, the smallest number of two-factor 
interactions will be confounded with interactions 
of order R,,, - 2, and so forth. Hence, the concept 
of aberration is a natural extension of resolution. 

In Section 3 we generalize the ideas presented 
above, giving a more precise definition of aberration 
and presenting a practical algorithm for construction 
of such designs. In Section 4 the problem of estimat- 
ing bounds for the maximum attainable resolution is 
discussed. 

3. AN ALGORITHM 

To generalize the setup illustrated in Table 1, sup- 
pose that a 2kmp design is constructed by first writing 
down a full two-level factorial design in k - p factors 
and then defining the column vectors for p additional 
factors by associating them with certain interaction 
columns involving the first k - p factors. Each such 
assignment results in a word (generator) equal to the 
identity I. For example, for design (a) the generators 
are 1236 and 2347. Taking products of the p genera- 
tors one at a time, two at a time, etc., gives the 
defining relation, which has 2p - 1 words plus I. For 
fixed N and k, and hence p, the problem is to select 
the best 2kmp design. As always, we must carefully 
consider the question of what we mean by “best”. 

Suppose two 2 k-p designs (s) and (t) of maximum 
resolution R max are to be compared, and their defining 
relations have these word-length patterns: 

(s): {R$JR,,, + l)“l(R,,X + 2)“’ ... (R,,, + my} 

(t): {RZa:,,(R,,, + l)fl(R,aX + 2)‘l ... (R,,, + n)“}. 

Determine the first subscript i such that si + ti. If 
Si < ti, then design (s) is the better design; otherwise 
(t) is the better d esign. We call designs for fixed N and 
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k that result from this procedure designs of minimum 
aberration. [Note: Possibly, though very rarely, two 
designs will have the same word length pattern even 
though one defining relation will not be a relabeling 
of the other (see Draper and Mitchell, 1968, 1970). In 
other words, the word length pattern does not 
uniquely define a design.] 

We will now consider how this principle can be 
employed in practice to construct useful designs. The 
National Bureau of Standards tabulation of two-level 
fractional factorial designs (Connor and Zelen, 1959), 
which makes use of a similar criterion, indicates in 
this statement one of the kinds of problems that must 
be addressed : “Although considerable effort was 
made to find solutions which have the maximum 
number of two-factor interactions confounded [only] 
with three-factor and higher-order interactions, other 
solutions may exist having a larger number of 
measurable two-factor interactions.” Criteria to be 
used in a related problem are suggested by Addelman 
(1969). In that paper it is implicit that consideration 
of resolution alone may not yield a unique design 
apart from relabeling. 

Direct Approaches 
The most direct approach is to write down all 

possible sets of p nonisomorphic generators (that is, 
sets of generators which are merely relabelings of 
others are not considered), calculate the associated 
word length patterns and select a choice of generators 
that will give a minimum aberration design. Actually, 
as shown in Appendix A, we only need to consider 
generators which contain all k variables. To establish 
the equivalence of two distinct choices of generators 
leading to the same word length pattern, it is possible 
to employ the “letter pattern comparison” test of 
Draper and Mitchell (1970). Instead of examining the 
p generators directly, it suffices to consider only the p 
higher-order interactions assigned to the last p var- 
iables. The word length pattern can be constructed by 
adding one to the length of each of these interactions, 
and by adding 1 to the length of each of their products 
taken 1 at a time. 

An advantage to this direct approach is that it is 
straightforward and readily programmable. Disad- 
vantages are first that one must check all the noniso- 
morphic choices of assignments before the best word 
length pattern can be established, and second that this 
purely computational procedure yields no insight into 
the problem. In particular, although counterexamples 
to conjectures can be discovered via this method, it is 
impossible to prove any general results. 

Let us now consider an alternative direct approach 
that makes use of results of Brownlee, Kelly and 
Loraine (1948) and Burton and Connor (1957) (see 
Appendix B). One can examine all nonisomorphic 

choices of nonnegative integrals t’s satisfying (B3), 
and then use (B4) to construct the corresponding 
word lengths and the associated word length patterns. 
Equations designated with B are in Appendix B. John 
(1966) has shown that when using (B4) all possible 
assignments of the t’s to specific generators and their 
products must be considered. Different assignments 
may result in different word length patterns. This 
approach is unwieldy and its advantages are not 
apparent. Its great disadvantage, similar to the 
difficulty associated with the first approach, is that all 
nonisomorphic choices of the t’s must be considered 
before the best word length pattern is determined. 

A Practical Algorithm 

A more fruitful approach is to consider the word 
length patterns themselves and construct an algo- 
rithm as follows. Here we initially assume the maxi- 
mum resolution R,,, to be known and consider only 
words with lengths not less than R,,,. (We return to 
this point in Section 4.) Choose word length patterns 
satisfying conditions (Bl) and (B2). Then use (B5) 
to solve for c t2 and check if this is compatible with 
(B3). Any word length pattern satisfying all these 
necessary conditions is a candidate for an actual word 
length pattern corresponding to a 2i-p design. For 
each set (possibly more than one) of t-values satisfying 
(B3) and (B5), the generators for the design are 
computed from (B4). As discussed in the last 
paragraph, the use of (B4) requires that all possible 
assignments of the t’s to particular generators and 
their products be considered. Those assignments 
which result in a word length pattern other than the 
one with which we began must be discarded. For 
values of k I 11 this has presented no great difficulty. 
However for a general 2:-P design, a specific sub- 
routine serving this purpose as well as computer 
assistance is required. 

The biggest advantage to this approach is that one 
need not check all possible word length patterns. 
Once an actual word length pattern has been estab- 
lished, by referring to Connor and Zelen (1959), say, 
or by writing out a set of generators and calculating 
the associated word length patterns, it suffices to con- 
sider only those word length patterns which by our 
criterion correspond to better designs. Elimination of 
all such possibilities then proves that the original 
design is best. If one begins with a design thought to 
be best, verification via this approach or discovery of 
a better design will not require a great deal of compu- 
tational effort. This is, of course, equivalent to begin- 
ning at the theoretically best possible word length 
pattern and examining successively worse patterns 
until a minimum aberration design is found. The 
designs displayed in Table 12.15 of Box, Hunter and 
Hunter (1978) were obtained in this manner. 

MINIMUM ABERRATION 2k-~ DESIGNS 603 
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4. BOUNDS FOR MAXIMUM RESOLUTION 

We now consider for given N and k (or equiva- 
lently k and p), the problem of determining R,,,, the 
maximum possible value of the resolution. This 
discussion will result in a modification of the last 
algorithm. For p = 1 it is obvious that R,,, = k. For 
p = 2, Robillard (1968) has shown that R,,, = [2k/3], 
where [x] is the greatest integer not exceeding x. 
More general bounds for skmP designs, where s is 
prime, have been obtained by Fujii (1976). Setting 
s = 2 and assimilating the above results, we have the 
following statement. The maximum resolution attain- 
able for a 2k-p design satisfies these equalities and 
inequalities, depending on the value of p: 

values of k and p for which the R,,, bound exceeds 
R,,,. The table indicates that the bound given by (3) 
is relatively sharp. 

R k max = ifp= 1 

= [2k,‘3] ifp=2 

= 2p-‘q if r = 0, 1 

5 2p-‘q + [2p-2(r - 1)/(2p-1 - l)] 

ifr=2 3 9 . 2p-‘-l 9 . *, 

i 2p-‘q + [r/2] if r = 2p-‘, . . . . 2p-2 

(1) 
where k = q(2p - 1) + r, 0 5 r < 2p - 2, q is an 
integer. (Fujii states that the last inequality of (1) 
holds for r = 2p- i + 1, . . . , 2p - 2, which for p = 2 
becomes r = 3, . . , 2, which is nonsensical. Although 
it is known that R,,, = [2k/3] when p = 2, the above 
reordering avoids any possible confusion.) 

After reading an original draft of this paper, B. H. 
Margolin suggested that another bound for R,,, 
could probably be obtained by considering the dual 
problem of the minimum number of observations 
required for a design to have resolution R. Following 
this suggestion and generalizing the work of Margo- 
lin (1969) and Webb (1968) we obtain the bound 

The discussion of the algorithm in Section 3 
assumed R,,, to be known. This was necessary be- 
cause a minimal word length was required before 
possible word length patterns could be investigated. 
Results (1) (2) and (3) permit the removal of this 
restriction. Given only k and p, one can determine the 
best word length pattern as follows. Let B denote the 
R max bound. Let R = B and use the algorithm in 
Section 3 to find, if possible, the best word length 
pattern. If there is no solution, set R = B - 1 and 
proceed as before. Continue in this manner until the 
best word length pattern is found. Figure 1 summar- 
izes this procedure. 

where N = 2k-p is the number of observations, H is 
the largest integer such that N 2 CEO (f) and I is the 
indicator function. A proof of (2) is given in 
Appendix C. 

To illustrate the above procedure we return to the 
2:v2 example. In this case the values of k and p are 
small so only a few calculations will be required, but 
in general the computations become lengthy and 
computer assistance is required. With k = 7 and 
p = 2, (1) gives B = R,,, = 4 and (Bl) yields 
c w = 14. The only word length patterns satisfying 
both of these conditions are {4,4,6} and (4, 5, 5}. We 
first examine (4, 5, 5) because it is the “best” available 
word length pattern (see Section 3). Exactly two 
words have odd length so that (B2) holds. From (B3) 
and (B5) we calculate c t = 7 and c t2 = 17 from 
which it follows that the t’s must take on the values 2, 
2 and 3. Consider the assignment t(l) = t(2) = 2, 
t(12) = 3. Employing (B4) we see that the generators 
have lengths w(1) = t(1) + ~(12) = 5, w(2) = t(2) + 
~(12) = 5, and their product has length ~(12) = 
t(1) + t(2) = 4. The generators, up to a relabeling of 
factors, are W(1) = 12346 and W(2) = 12357. These 
choices satisfy the conditions imposed on their 
lengths and on the length of their product. The deter- 
mination of the generators also follows from Figure 2, 
appropriately modified for the present example. The 
same generators are obtained using t( 1) = $12) = 2 
and t(2) = 3, the only other possible assignment of 
the t’s 

5. SUMMARY 

Table 2 displays a comparison of the R,,, bounds 
from (1) and (2) for various values of k and p. It is 
seen that (1) is better for small values of p whereas (2) 
is better for large values of p. This suggests that we 
adopt the bound 

R,,, _< minimum[R,,, bound (1) R,,, bound (2)]. 

(3) 
Table 2 also compares K,,, and the R,,, bound ob- 
tained from (3). Here the asterisk (*) denotes those 

The statistical literature gives the curious impres- 
sion that one should only worry about confounding 
for fractional factorials. However, if a full 2k design is 
performed and the true, but unknown, response func- 
tion is quadratic, the corresponding quadratic 
coefficients are confounded with the mean. Whether it 
is prudent to run a full or fractional design depends 
on such factors as the object of the investigation, the 
size of the budget, and plausible forms of the true 
response function. For a 2k-p design, it is not com- 
pletely satisfactory to consider the confounding pat- 
tern by itself because it ignores second-order 
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TABLE 2-A comparison of R,,, and the R,,, bounds obtained from equations (I), (2) and (3). The 
asterisk (*) indicates that R,,, bound (3) > R,,, 

3 3 

3 3 

4 4 

3 3 

4 4 

4 5 

4 4 

4 4 

5 5 

4 3 

4 4 

4 5 

6 6 

4 3 

4 4 

5 5 

5 5 

6 6 

5 3 

5 4 

5 4 

5 6 

6 7 

7 9 

quadratic and higher-order effects. In practice one 
must view the confounding pattern against the back- 
drop of many other factors. What is usually done is to 
concentrate on a careful examination of the con- 
founding pattern itself, while in some fashion keeping 
in mind these other factors. But it can be tedious to 
work out the complete confounding patterns for dif- 
ferent candidate designs and difficult to compare 
them in order to choose the “best” one. In many 
circumstances it is reasonable to consider abbreviated 
rather than complete confounding patterns because 
this saves time. Moreover it may be more sensible 
anyway because it is not logical in general to be 
worrying about the possible influence of kth, 
(k - l)th, . . . order interactions while ignoring 
second-order quadratic effects. By examining ab- 
breviated confounding patterns, one essentially eli- 
minates from consideration the high-order 
interactions. Taking this process of simplifying the 

k P - 

5 2 

6 3 

6 2 

7 4 

7 3 

7 2 

8 4 

8 3 

8 2 

9 5 

9 4 

9 3 

9 2 

10 6 

10 5 

10 4 

10 3 

10 2 

11 7 

11 6 

11 5 

11 4 

11 3 

11 2 

R 
max 

bound 
(1 1 

R 
max 

bound 
(2 1 

R 
max 

bound 
(3) 

R 
max 

3 3 

3 3 

4 4 

3 3 

4 4 

4 4 

4 4 

4 4 

5 5 

3 3 

4 4 

4 '4 

6 6 

3 3 

4 4 

5 4* 

5 5 

6 6 

3 3 

4 4 

4 4 

5 5 

6 6 

7 7 

k e - 

12 8 

12 7 

12 6 

12 5 

12 4 

r:12 3 

12 2 

13 9 

13 8 

13 7 

13 6 

13 5 

13 4 

13 3 

13 2 

14 10 

14 9 

14 8 

14 7 

14 6 

14 5 

14 4 

14 3 

14 2 

R 
max 

R 
max 

bound bound 
(1 1 (2 ) 

R 
max 

bound 
(3) 

R 
max 

5 3 3 3 

5 4 4 4 

5 4 4 4 

5 5 5 5 

6 6 6 6 

6 8 6 6 

8 9 8 8 

6 3 3 3 

6 4 4 4 

6 4 4 4 

6 5 5 4" 

6 6 6 4* 

6 7 6 6 

6 8 6 6 

8 9 8 8 

6 3 3 3 

6 4 4 4 

6 4 4 4 

6 5 5 4" 

6 6 6 5* 

6 7 6 5* 

7 8 7 6* 

7 10 7 7 

9 11 9 9 

selections of 2k-p designs to a useful limit, one arrives 
at a concept like resolution, which does not require 
the writing out of even the abbreviated confounding 
patterns but essentially only the defining relations 
themselves. 

The point raised in the present paper is that using 
resolution alone may short circuit the selection 
process too severely in some situations because all 
designs of the same resolution are not equally good. 
The concept of aberration allows one to more closely 
approximate what should ideally be done in compar- 
ing 2 k-p designs, with not much more work than 
considering resolution alone. As discussed in the 
body of this paper, the concept of aberration is a 
natural extension of resolution. We have presented 
three algorithms for generating minimum aberration 
designs. It is not clear which, if any, can be extended 
to sk-P designs, where s is a prime number greater 
than two. 
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FIGURE 1. Summary of algorithm for construction of minimum aberration 2k-p fractional factorial 
designs (appropriate equation numbers are given in parentheses). 

c 

Find "best" word length 
none Old t 

pattern with resolution I 

= B and Zw satisfied 
(Bl) 

4 Eliminate 
1 word length pattern 

2ratio; 1 4 
Check number of 

even and odd words 
(B2) 

from considc 

I 
I I 

4 
Compute Zt, Et* 

(B3) (85) 
not compatible 

-if none no Compute a possibl 
set of t's 

and their products 

\ 
design 

/ 
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W(3) = 45 APPENDIX A 

Lemma: The best word length pattern corresponds 
FIGURE 2. An illustration of the definition of t(i, ‘. i,). Entries to a defining relation in which all k factors are 
underlined with a tilde (‘) are to be regarded as boldface characters. present, that is, all of the first k - p factors are used in 
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the assignment of higher-order interactions to the last 
p factors. 

Proof: Given k and p (we need not be given R), we 
want to show that any word length pattern that does 
not use all of the first k - p factors in the assignment 
of higher-order interactions to the last p factors is 
inferior to some word length pattern that uses all of 
the factors. Let the first word length pattern under 
consideration be denoted by R”“(R + l)“‘(R + 2).* . . . 
(R + m)? where a0 > 0, ai 2 0 for 1 I i I m. Add 
exactly one of the unassigned factors to a generator 
and examine the resulting word length pattern. The 
length of that generator will increase by one. Also, 
since this added factor appears only in one genera- 
tor, cancellation because of multiplication is not pos- 
sible and all products including that generator will 
have the word length increased by one. Thus the 
resulting word length pattern is of the form 
RbO(R + l)b’ ... (R + m)bm(R + m + l)bm+l where 
b. Iao, b, 20 for 1 Ii Sm+ 1. If b. <a, 
the second pattern is better. If b, = a, we have 
b. = aor b, = aI, . . ., b, = aj, bj+l < aj+l for some j 
satisfying 1 5 j I m, from which we conclude that the 
second pattern is better. Continuing to add the unas- 
signed factors one at a time to the generators com- 
pletes the proof, 

number of indices from (iI, . ., i,), respectively. Let- 
ting n(0) and n(E) denote the number of symbols in 0 
and E it is easily seen that n(0) = 2p-1 and 
n(E) = 2p-’ - 1. 

Finally let t = t(iI ... i,) denote the number of 
letters which occur in all of the s generators W(i,), . . . , 
W(i,), but not in the remaining generators. Figure 2 
illustrates this definition. 

APPENDIX B 

The following theorems hold if all k variables 
appear in the defining relation. 

Theorem Bl : Let w i, . . . , w, denote the lengths of 
m = 2p - 1 words. Then the following are two neces- 
sary conditions that these words correspond to a 
defining relation of a 2k-p design: 

i~lwi = 2P-‘k, 031) 

Either the w’s all are even or 
exactly 2p- ’ of them are odd. FQ) 

The conditions of Theorem Bl do not require that 
the lengths of particular generators and their pro- 
ducts be specified. Before we state necessary and 
sufficient conditions for the existence of a defining 
relation for which the lengths of the generators and 
their products are given we must introduce some 
notation. 

Let i,, . . . . i, be s integers such that 0 < i, < ... < 
is < p + 1. Denote the product of the i,th, i,th, . and 
i&h generator by W(i, ... is) and let the length of the 
word I+‘( i, . . . is) be denoted by w(i, ... i,). Then W(i) 
is the ith generator and there are exactly 2p - 1 words 
corresponding to the collection of 2p - 1 symbols (il, 

The t’s are the number of letters in the basic dis- 
joint sets from which it follows that 

; t(i1 . . . is) = k. 033) 

Furthermore any set of t’s which are positive integers 
or zero and satisfy (B3) corresponds to a construc- 
tible defining relation involving k factors. These re- 
sults are also stated within the following theorems 
from Burton and Connor (1957). 

Theorem B2: If the w’s satisfy the 2P - 1 equations 

; 41 ...j,) - T ~0’~ .f. j,) = 2Pe1t(il ... i,), 

where co t + CE t = k in the sense of implying t’s 
which are nonnegative integers, then the defining 
relation exists. Furthermore, from the 2P - 1 
equations 

Otis. i~,r~l 
. . . j,) = w(i, * . . is) ( w 

it follows that the r’s are sufficient to construct the 
defining relation, and the defining relation corre- 
sponding to a set of t’s is unique (apart from 
relabeling). 

Theorem B3 : A necessary condition for the defining 
relation to exist is that there are k or fewer positive 
integers whose sum is k and whose squares add to 
2-p’2 1 w2 - k2, that is 

c w2 = 2P-2(c t2 + k2). W) 

APPENDIX C 

Lemma: A 2k-p design of even resolution R = 21 
must contain at least If=: (t) + (:I:) runs. 

(Margolin (1969) and Webb (1968) independently 
established this result for I = 2. Below we modify 
Webb’s proof only slightly to obtain the above 
generalization.) 

Proof: Let Xi’), . ., Xi” be the column vectors 
associated with the k main effects, let Xi2), . . . , X$ be 
the column vectors associated with the (i) two-factor 
interactions, . . . , let Xy- i), . . . , Xi?:’ be the column 
vectors associated with the (r!‘i)(/ - l)th-factor inter- 
actions, and define the matrix X by 

. ..) is) which we will denote by S. Also introduce the 
symbols 0 = O(iI, . . , is) and E = E(i,, . , i,) to 
denote the collection of symbols which contain an 
odd number of indices from (iI, . . , i,), and the collec- 
tion of symbols which contain none or an even 

x = 
I 

xp, Xi” 7q) .> 2 , ..', x;,7 

“‘3 
p-1’ x ‘i-1’ 

2 1 “’ $5) . 
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b-3 zo, Zl, . . ., q;, represent the column vectors 
associated with the grand mean and the interactions 
of the first factor with the (:I :) (I - l)th-factor inter- 
actions which do not include the first factor. Define 
the matrix Z by Z = [Z,, Z,, . . . , Z& The col- 
umns of the matrix [X, Z] are linearly independent by 
the orthogonality of the vectors. 

Now suppose the design contains N < If=: 
$I + (3 runs. Select any vectors W,, . . , 

N _ E:=i ,:) such that the matrix [X, W] is of rank N. 
Here we have defined W = [W,, . . , W,,-I~+: (!,I 
and implicitly used N 2 If16 (r). Since [X, W] is of 
full rank there exist matrices H, and H2 such that 
Z = XH, + WH2. We next show H, = 0. Write the 
model for the design as EY = XB, + WB, + ZB3 
where Y is the N x 1 vector of responses, B1 is the 
(Ci:: (f)) x 1 vector of parameters to be estimated, 
and B, and B3 are respectively (N - 1:;; (:)) x 1 
and ((:I;) + 1) x 1 vectors. Since EB, = B1 and 
fi, = JY for some matrix J we have EJY = 
J(XB, + WB, + ZB3) = B1. It follows that JX = I, 
JW = 0 and JZ = 0. But 

JZ = J(XH1 + WH2) 

= JXHl + JWHz = IH, + OH2 = H1 

so that we must have H, = 0 and Z = WH,. This 
contradicts the assumption N < If:: (!) + (:I:) 
since there are more linearly independent Z’s than 
there are linearly independent W’s. 

Theorem: Let N = 2k-p, let H be the largest 
integer such that N 2 ILo (1) and let I be the indica- 
tor function. Then 

R,,, 5 1 + 2H + I N 2 2 (:) + (k;l) (Cl) 
i=O I 

Proof: Suppose R,,, = 1 + 21 is odd. Then the 
parameters estimated include the grand mean, the k 
main effects, the (:) two-factor interaction, . . . , and 
the (f) I-factor interactions. This requires a minimum 
of 1 + (:) + (i) + .*. + (i) = xfzo (7) I N runs. 
Then I i H and R,,, = 1 + 21 I 1 + 2N so that (Cl) 
holds. Now suppose R,,, = 21 is even. From the 

definition of H we have H 2 I- 1. If H = I- 1, then 
R,,, = 21 = 2 + 2H and (Cl) is satisfied since 
N 2 Ii:& (1) + (:I i) by the preceding lemma. If 
H 2 1 then R,,, = 21 5 2H and (Cl) holds. 
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