

Section 1

MANE 6313

Subsection 1

Week 12, Module D

Student Learning Outcome

- Select an appropriate experimental design with one or more factors,
- Select an appropriate model with one or more factors,
- Evaluate statistical analyses of experimental designs,
- Assess the model adequacy of any experimental design, and
- Interpret model results.

Module Learning Outcome

Employing test of hypothesis test on groups of variables.

Applying Tests of Hypothesis for Groups of Variables

- There is a concern regarding the overall error rate for multiple decisions
- Very similar to family-wise error rate in multiple comparisons
- In Ex 12.8, when examining the slope terms, three decisions are made at some value of alpha (usually 0.05). The overall error rate will be larger

$$\alpha_{overall} = 1 - (1 - \alpha_{individual})^n$$

- For Ex 12.8 using $\alpha_{individual} = 0.05$,

$$\alpha_{overall} = 1 - (1 - .05)^3 = 0.1426$$

Tests for groups of regression coefficients

- We can examine the contribution of the regression sum of squares for a particular variable, say x_j , given that other variables $x_i (i \neq j)$ are included in the model
- We can also determine if the subset of regressor variables $x_1, x_2, \dots, x_r (r < k)$ contribute to the model
- This test is necessary to control the overall error rate
- The full model is

$$\mathbf{y} = \mathbf{X}\beta + \varepsilon$$

- We partition the regressors in two groups

$$\beta = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}$$

where β_1 is $(r \times 1)$ and β_2 is $[(p - r) + 1]$

- We can rewrite the **full model** as

$$\mathbf{y} = \mathbf{X}_1\beta_1 + \mathbf{X}_2\beta_2 + \varepsilon$$

- The regression sum of squares for the full model is denoted $SS_R(\beta)$ with p degrees of freedom
- We define the reduced model to be

$$\mathbf{y} = \mathbf{X}_2\beta_2\varepsilon$$

- The regression sum of squares for the reduced model is $SS_r(\beta_2)$ with $p - r$ degrees of freedom.
- The regression sum of squares due to β_1 given that β_2 is already in the model is

$$SS_R(\beta_1|\beta_2) = SS_R(\beta) - SS_R(\beta_2)$$

- The null hypothesis $\beta_1 = \mathbf{0}$ can be tested with the statistic

$$F_0 = \frac{SS_R(\beta_1|\beta_2)/r}{MS_E}$$

- Reject H_0 if $F_0 > F_{\alpha, r, n-p}$
- This is sometimes called the *partial F test* or extra sum of squares method

Step 1 - Fit Full Model

```
95 ~ ``{r}
96 ex12_8.full <- lm(GrainRadius~PowderTemp+Extrusion+DieTemp,data=ex12_8.df)
97 anova(ex12_8.full)
98 ~``
```

Analysis of Variance Table

Response: GrainRadius

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
PowderTemp	1	50.0	50.0	2.1622	0.2153975
Extrusion	1	1740.5	1740.5	75.2649	0.0009715 ***
DieTemp	1	3784.5	3784.5	163.6541	0.0002152 ***
Residuals	4	92.5	23.1		

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Figure 1: Full Model

Step 2 - Fit Reduced Model

```
84 ~ ``{r}
85 ex12_8.reduced <- lm(GrainRadius~Extrusion+DieTemp,data=ex12_8.df)
86 anova(ex12_8.reduced)
87 }
```

Analysis of Variance Table

Response: GrainRadius

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Extrusion	1	1740.5	1740.5	61.07	0.0005501 ***
DieTemp	1	3784.5	3784.5	132.79	8.629e-05 ***
Residuals	5	142.5	28.5		

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Figure 2: Reduced Model

Step 3 - Analysis

Full Model

$$SS_R(\beta) = 50 + 1740.5 + 3784.5 \\ = 5575$$

$$df_R = 3$$

$$MS_E = 23.1$$

$$df_E = 4$$

$$F_0 = \frac{(5575 - 5525) / (3-2)}{23.1} = 2.164$$

Reduced Model

$$SS_R(\beta_2) = 1740.5 + 3784.5 \\ = 5525$$

$$df_R = 2$$

Reject H_0 if $F > F_{0.05, 1, 4} = 7.71$

Conclusion: Fail to reject H_0 , all terms (PowderTemp) in β_2 have slopes of zero.

Partial F-test in R

```
84 ~ ``{r}  
85  anova(ex12_8.reduced,ex12_8.model)  
86 ~ ``{r}
```

Analysis of Variance Table

Model 1: GrainRadius ~ Extrusion + DieTemp

Model 2: GrainRadius ~ PowderTemp + Extrusion + DieTemp

Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
1	5	142.5			
2	4	92.5	50	2.1622	0.2154

Source:

<https://www.statology.org/partial-f-test/#:~:text=A%20partial%20F-test%20is%20used%20to%20determine%20whether,the%20predictor%20variables%20in%20the%20overall%20regression%20model.>