

Section 1

MANE 6313

Subsection 1

Week 13, Module D

Student Learning Outcome

- Select an appropriate experimental design with one or more factors,
- Select an appropriate model with one or more factors,
- Evaluate statistical analyses of experimental designs,
- Assess the model adequacy of any experimental design, and
- Interpret model results.

Module Learning Outcome

Employ `rsm()` to design and analyze RSM models.

RSM Design in Package rsm()

- rsm() supports two designs:
 - Box-Behnken design with 2 to 7 factors
 - Center Composite Design (ccd)
- Details and examples of using both designs will be provided in separate modules

Model Types

- The model formula for designs in `rsm()` is different
 - `FO()` specifies first-order model
 - `TWI()` is used to generate two-way interactions
 - `PQ()` is used to add pure quadratic terms to model
 - `SO()` creates all terms (`FO()`, `TWI()`, `PQ()`) in a model

Coded Variables

- When analyzing RSM models, variables should be coded
- The R chunk for creating coded variables in a model is shown below

```
library(rsm)
bb3.design <- bbd(3,n0=2,coding=list(x1~(Force-20)/3,x2~(Rate-10)/2,x3~(Temp-100)/10),print=TRUE)
print(bb3.design)
```

Coded Variables Output

```
14 ~~~{r}
15 library(rsm)
16 bb3.design <- bbd(3, n0=2, coding=list(x1~(Force-20)/3, x2~(Rate-50)/10, x3~Polish-4))
17 print(bb3.design)
18 ~~~
```

	run.order	std.order	Force	Rate	Polish
1	1	7	17	50	5
2	2	10	20	60	3
3	3	9	20	40	3
4	4	14	20	50	4
5	5	3	17	60	4
6	6	5	17	50	3
7	7	4	23	60	4
8	8	6	23	50	3
9	9	13	20	50	4
10	10	12	20	60	5
11	11	8	23	50	5
12	12	1	17	40	4
13	13	11	20	40	5
14	14	2	23	40	4

Data are stored in coded form using these coding formulas ...

$x1 \sim (Force - 20)/3$

$x2 \sim (Rate - 50)/10$

$x3 \sim Polish - 4$

Adding a Response Variable

```
y <- rnorm(14)  
bb3.design$y <- y  
print(bb3.design)
```

Adding a Response Variable Output

```
20 ~ ``{r}
21 y <- rnorm(14)
22 bb3.design$y <- y
23 print(bb3.design)
24 ~ ``
```

	run.order	std.order	Force	Rate	Polish	y
1	1	7	17	50	5	1.3724421
2	2	10	20	60	3	1.7480628
3	3	9	20	40	3	-0.5099157
4	4	14	20	50	4	0.8571949
5	5	3	17	60	4	-1.5198610
6	6	5	17	50	3	1.2546819
7	7	4	23	60	4	0.1785562
8	8	6	23	50	3	-0.2568965
9	9	13	20	50	4	-1.8243286
10	10	12	20	60	5	1.2297702
11	11	8	23	50	5	0.3593844
12	12	1	17	40	4	1.0656732
13	13	11	20	40	5	1.1265194
14	14	2	23	40	4	0.9289255

Data are stored in coded form using these coding formulas ...

$x1 \sim (\text{Force} - 20)/3$

$x2 \sim (\text{Rate} - 50)/10$

Model Fitting

```
bb3.fitted <- rsm(y~S0(x1,x2,x3),data=bb3.design)
summary(bb3.fitted)
```

Model Fitting Output

```

26 ~~~{r}
27 bb3.fitted <- rsm(y~SO(x1,x2,x3),data=bb3.design)
28 summary(bb3.fitted)
29 ~~~

```

```

Call:
rsm(formula = y ~ SO(x1, x2, x3), data = bb3.design)

```

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-0.48357	1.10443	-0.4378	0.6841
x1	-0.12037	0.55222	-0.2180	0.8381
x2	-0.12183	0.55222	-0.2206	0.8362
x3	0.23152	0.55222	0.4193	0.6966
x1:x2	0.45879	0.78095	0.5875	0.5884
x1:x3	0.12463	0.78095	0.1596	0.8809
x2:x3	-0.53868	0.78095	-0.6898	0.5283
x1^2	0.21534	0.87313	0.2466	0.8173
x2^2	0.43155	0.87313	0.4943	0.6470
x3^2	0.95063	0.87313	1.0888	0.3375

```

Multiple R-squared:  0.3734,   Adjusted R-squared:  -1.036
F-statistic: 0.2649 on 9 and 4 DF,  p-value: 0.9546

```

Analysis of Variance Table

Response: y	DF	Sum Sq	Mean Sq	F value	Pr(>F)
FO(x1, x2, x3)	3	0.6635	0.2222	0.0907	0.9614
TWI(x1, x2, x3)	3	2.0648	0.6883	0.2821	0.8367
PQ(x1, x2, x3)	3	3.0869	1.0290	0.4218	0.7479
Residuals	4	9.7581	2.4395		
Lack of fit	3	6.1628	2.0543	0.5714	0.7223
Pure error	1	3.5953	3.5953		

Stationary point of response surface:

x1	x2	x3
1.2224666	-0.7710184	-0.4203606

Stationary point in original units:

Force	Rate	Polish
23.667400	42.289816	3.579639

Eigenanalysis:

```

eigen() decomposition
\$values
[1] 1.06647794 0.50637516 0.02466496

\$vectors
[,1]      [,2]      [,3]
x1 -0.04164836 -0.6261646  0.7785777

```