Section 1

MANE 6313

Subsection 1

Week 10, Module E

Student Learning Outcome

- Select an appropriate experimental design with one or more factors,
- Select an appropriate model with one or more factors,
- Evaluate statistical analyses of experimental designs,
- Assess the model adequacy of any experimental design, and
- Interpret model results.

Module Learning Outcome

Analyze a one-quarter fraction manually.

The quarter-fraction of the 2^k Design

- You must select two generators, I = P and I = Q
- Don't forget the generalized interaction. The complete defining relation is I=P=Q=PQ
- There are four possible fractions formed by the combinations of $(\pm P, \pm Q)$
- The principal fraction is defined by I = P = Q
- The complementary fractions are I=-P=Q, I=P=-Q, I=-P=-Q

Quarter Fraction Example – Problem 8.11 (Textbook 9th edition)

An article in Industrial and Engineering Chemistry ("More on Planning Experiments to Increase Research Efficiency," 1970, pp. 60-65) uses a 2^{5-2} design to investigate the effect of A =condensation temperature, B =amount of material 1, C = solvent volume, D = condensation time, and E = amount of material 2 on yield. The results obtained are as follows:

$$e = 23.2$$
 $ad = 16.9$ $cd = 23.8$ $bde = 16.8$ $ab = 15.5$ $bc = 16.2$ $ace = 23.4$ $abcde = 18.1$

- (a) Verify that the design generators used were I = ACE and I = BDE
- (b) Write down the complete defining relation and the aliases for this design.
- (c) Estimate the main effects.
- (d) Prepare an analysis of variance table. Verify that the AB and AD interactions are available to use as error.
- (e) Plot theresiands versus the fifted

Design Verification

Defining Relation

Aliasing for Interaction Effects

2 - Factor Interactions

There are (4)=6 two-factor interactions:

AB, AC, AD, BC, BD, CD

DAS: AB(I = ACE = BDE A BCD)

: AB = ABCE = ABODE = CD

: AB = BCE = ADE = CD

DAC: AC(I = ACE = BDE = ABCD)

: Ac=E = ABCDE = BD

QAD: AD (I = ACE = BDE = ABCD)

: AD = CDE = ABE = BC