Section 1

MANE 6313

Subsection 1

Week 11, Module E

Student Learning Outcome

- Select an appropriate experimental design with one or more factors,
- Select an appropriate model with one or more factors,
- Evaluate statistical analyses of experimental designs,
- Assess the model adequacy of any experimental design, and
- Interpret model results.

Module Learning Outcome

Describe sequential analysis and fold over on a factor.

Fold-over on a Factor

- To separate an interesting effect, e.g. C, go to the appropriate column in the design matrix and change the sign for all rows in that column
- Folding over on a factor will result in a combined design that:
 - Main effect of factor will not be aliased with other two-factor interactions,
 - In general, all two-factor interactions involving the factor used for the fold-over will not be aliased with other two-factor interactions

Example Problem

- Taken from Devore, Change and Sutherland
- 2⁷⁻⁴ resolution III design
- \bullet Generators are 4=12, 5=13, 6=23 and 7=123 (DCS uses numbers instead of letters)

		Level (weight %)		
Variable	Ingredient	Low (-)	High (+)	
1	Soybean emulsion: 9.3% soybean solids	1.67	5.00	
2	Vegetable fat: hydrogenated coconut oil	10.00	20.00	
3	Carbohydrates: corn syrup solids	0.00	5.00	
4	Emulsifiers: mono- and di-glycerides	0.17	0.50	
5	Primary stabilizer: hydroxypropyl methyl cellulose	0.00	0.50	
6	Secondary stabilizer: microcrystalline cellulose	0.00	0.25	
7	Salt: sodium chloride	0.00	0.10	

*Amount of sucrose kept constant at 7%; water added to balance to 100%.

Example Problem - Design Matrix

TABLE 21.3		Design (Recipe) Matrix						
Test	1	2	3	4	5	6	7	Overrur (%)
4			_	+	+	+	_	115
1	_		<u>_</u>	CL	_	+	+	81
2	+	_			+	_	+	110
3	_	+				_	_	69
4	+	+	-	+			+	174
5	-	_	+	+				99
6	+	_	+	_	+			
7	_	+	+	_	_	+	-	80
8	+	+	+	+	+	+	+	63

Figure 2: Example Design Matrix

Design using R

Figure 3: Initial Design in R

```
81 - ```{r}
82 library(FrF2)
83 sequential.df <- FrF2(nFactors=7,nruns=8,gen=c("AB","AC","BC","ABC"),randomize=FALSE)
84 summary(sequential.df)
85 ^ ``</pre>
```

```
data.frame
                                        data.frame
     R Console
                                           8 x 7
Ca11:
FrF2(nFactors = 7, nruns = 8, gen = c("AB", "AC", "BC", "ABC"),
    randomize = FALSE)
Experimental design of type FrF2.generators
8 runs
Factor settings (scale ends):
Design generating information:
$leaend
[1] A=A B=B C=C D=D E=E F=F G=G
$aenerators
[1] D=AB E=AC F=BC G=ABC
Alias structure:
$main
[1] A=BD=CE=FG B=AD=CF=EG C=AE=BF=DG D=AB=CG=EF E=AC=BG=DF F=AG=BC=DE G=AF=BE=CD
```

The design itself:

R: Response Variable

Figure 5: Adding Response Variable in R

```
97 - ```{r}
    library(FrF2)
     DanielPlot(sequential.df,response="overrun.base",half=TRUE,alpha=0.4)
100 -
                                                                                                                         € x
                             R Console
                              Half Normal Plot for overrun.base, alpha=0.4
                                                                                    * A
            1.5
       half-normal scores
0.5 1 n
                                                                           * B
                                                             * F
                                              20
                                                               30
                             10
                                                                                40
                                                                                                 50
                                                   absolute effects
```

Fold-over on A

• Change the sign for all rows of design column matrix for variable A; run another fraction

TABLE 21.9		Alternative Fraction Design Matrix							
Test	1	2	3	4	5	6	7	Overrun (%)	
17	+	-		+	+	+	_	66	
18	_	-		-	-	+	+	171	
19	+	+	_	-	+	-	+	147	
20	-	+	-	+	-	_	_	122	
21	+	_	+	+	-	-	+	51	
22	-	-	+	-	+	-	-	148	
23	+	+	+	/-	-	+	-	49	
24	-	+	+	+	+	+	+	14	
24 Genera	tors: I	+ = -124, <i>I</i> =	+ = -135, <i>I</i>	+ z = 236,	I = -123	+	+		

Figure 7: Design Matrix for Fold-over on A

Figure 8: Design Matrix with Responses

Aliasing Information from Design

```
128 - '''{r}
129 sequential.foldA <- fold.design(sequential.df,columns=1,randomize=FALSE)
130 overrun.foldA <- c(115,81,110,69,174,99,80,63,66,171,147,122,51,148,49,14)
     sequential.foldA <- add.response(sequential.foldA, overrun.foldA)
     summary(sequential.foldA)
133 - ```
```


Half-Normal Plot for Fold-over

10

0

Figure 10: Half-Normal Plot for Fold-over Design

30

40

20

absolute effects

Interpretation of Half Normal Plot

- All main effects are not aliased with other main effects or two factor interactions (A, C, D)
- From aliasing scheme for AG, BF and/or CD and/or EH (with or without AG being large)
- From aliasing scheme for AD, -BE and/or -CF and/or -FH (with or without AD being large)
- From aliasing scheme for AB, CH and/or -DE and/or FG (with or without AB being large)
- From aliasing scheme for AE, -BD and/or CG and/or FH (with or without AE being large)

Initial Model

```
141 - ```{r}
    foldA.model1 <- gov(overrun.foldA~A:B+A+B+A:E+E+F+D+d,data=sequential.foldA)
     summary(foldA.model1)
144 -
                  Df Sum Sq Mean Sq F value
                                             Pr(>F)
                       5968
                               5968 46.136 0.000255 ***
                       3938
                                    30.442 0.000890 ***
                         77
                                      0.592 0.466843
                       4935
                               4935 38.153 0.000455 ***
      D
                       2783
                               2783 21.512 0.002375 **
                       2576
                               2576 19.912 0.002928 **
                       6123
      A:B
                               6123 47.338 0.000235 ***
                       5077
                               5077 39.247 0.000418 ***
      A:E
                        905
                               129
      Residuals
                      0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Figure 11: Initial Model in R

Aliasing in Folded Model

```
146 · ```{r}
147 aliases(foldA.model1)
148 · ```

[1] no aliasing in the model
```

Figure 12: Aliasing in Folded Model