Section 1

MANE 6313

Subsection 1

Week 11, Module F

Student Learning Outcome

- Select an appropriate experimental design with one or more factors,
- Select an appropriate model with one or more factors,
- Evaluate statistical analyses of experimental designs,
- Assess the model adequacy of any experimental design, and
- Interpret model results.

Module Learning Outcome

Describe sequential analysis and addition of center points.

Center Points for Fractional Factorial

- Same concept as introduced in Chapter 6.8 The Addition of Center Points to the 2^k Design
- R documentation provides the following reasons to add center points to fractional factorial designs
 - "Provide a repeated benchmark run that can alert the experiment to unplanned changes in experimental conditions,"
 - "Provide an independent estimate of experimental error," and
 - "Provide a possibility for checking whether a first order model is sufficient"

Source:

https://search.r-project.org/CRAN/refmans/FrF2/html/add.center.html

Example Problem

- Devore, Chang and Sutherland provided an example
 - One-eight fraction of a seven factor design (16 runs)
 - 7 center points are added

Base Design

Figure 1: Example Problem - Base Design

Combined Design

Figure 2: Combined Design

Design Details for Combined Design

```
160 - ```{r}
    library(FrF2)
161
     combined.df <- add.center(base.df,7)
162
    y.combined <- c(458,323,355,353,404,360,376,314,404,361,361,388,377,393,427,312,548,532,526,541,518,537,516)
164
     combined.df <- add.response(combined.df,y.combined)
165
     summary(combined.df)
166 -
```

```
data.frame
                                        data.frame
     R Console
FrF2(nruns = 16, nfactors = 7, randomize = FALSE)
Experimental design of type FrF2.center
23 runs
Factor settings (scale ends):
Responses:
[1] y.base
              v.combined
Design generating information:
$legend
[1] A=A B=B C=C D=D E=E F=F G=G
$generators
Γ17 E=ABC F=ABD G=ACD
Alias structure:
$fi2
[1] AB=CE=DF AC=BE=DG AD=BF=CG AE=BC=FG AF=BD=EG AG=CD=EF BG=CF=DE
```

Half Normal Plot

Figure 5: Half-Normal Plot for Combined Data

Initial Model

```
179 - ```{r}
    combined.model1 <- aov(y.combined~A+B+E+F,data=combined.df)
    summary(combined.model1)
182 - ` ` `
                                                                                                                  € 8 X
                 Df Sum Sq Mean Sq F value Pr(>F)
                      8010
                              8010
                                    1.141 0.300
                  1 2352
                              2352
                                    0.335 0.570
                  1 7744
                              7744 1.103 0.308
                      1936
                              1936
                                    0.276 0.606
                 18 126374
                              7021
      Residuals
```

Figure 6: Initial Model

Test for Pure Quadratic Curvature

See Week Seven - Module G

```
185 + ```{r}
186 v.cp <- c(548,532,526,541,518,537,516)
     n_f=nrow(base.df)
188 ybar_f=mean(y.base)
189 n_c=nrow(combined.df)-nrow(base.df)
190 ybar_c=mean(y.cp)
191 ss_pq=n_c*n_f*(ybar_f-ybar_c)^2/(n_c+n_f)
192 sprintf("Factorial Statistics: n_f=%i, vbar_f=%f",n_f,vbar_f)
193 sprintf("Center point Statistics: n_c=%i, ybar_c=%f",n_c,ybar_d)
     sprintf("SS_Pure Ouadratic=%f".ss_pa)
194
195 ms_residual=7021
196 F 0=ss pg/ms residual
197 sprintf("F0=%f",F_0)
198 df_resid = 18
199 criticalValue = qf(0.05,1,df_resid,lower.tail = FALSE)
     sprintf("Reject the null hypothsis if F0>%f",criticalValue)
200
     sprintf("Since %f > %f, the null hypothsis is rejected and quadratic curvature is present.",F_0,criticalValue)
202 - ` ` `
                                                                                                                    [1] "Factorial Statistics: n_f=16, ybar_f=372.875000"
      [1] "Center point Statistics: n_c=7, ybar_c=531.142857"
      Γ17 "SS Pure Quadratic=121976.349379"
      [1] "F0=17.373074"
      [1] "Reject the null hypothsis if F0>4.413873"
      [1] "Since 17.373074 > 4.413873, the null hypothsis is rejected and auadratic curvature is present."
```

Figure 7: Test for Pure Quadratic Curvature

219 - ```{r}
220 plot(combined.df\$A,combined.df\$y.combined,xlab="Factor A",ylab="y",main="Factor A vs. y")
221_^ ```

