Attendance 1-B

MANE 3332.01

Lecture 22

Agenda

- Continue Chapter 8 lecture
- Chapter 8, Case 1 Quiz (assigned 11/11/2025, due 11/13/2025)
- Chapter 8, Case 2 Practice Problems (assigned 11/11/2025, due 11/13/2025)
- New: Chapter 8, Case 2 Quiz (assigned 11/13/2025, due 11/18/2025)
- New: Chapter 8, Case 3 Practice Problems (assigned 11/13/2025, due 11/18/2025)
- Attendance
- Questions?

Handouts

- Lecture 22 Slides
- Lecture 22 Slides marked

Week	Tuesday Lecture	Thursday Lecture
11	11/11 - Chapter 8 (part 2)	11/13 - Chapter 8 (part 3)
12	11/18 - Chapter 8 (part 4)	11/25 - Chapter 9 (part 1)
13	11/25 - Chapter 9 (part 2)	11/27 - Thanksgiving Holiday (no class)
14	12/2 - Chapter 9 (part 3)	12/4 - Linear Regression
15	12/9 - Review Session	12/11 - Study Day (no class)

The final exam for MANE 3332.01 is **Thursday December 18, 2025 at 10:15 AM - 12:00 PM**.

Summary of One-Sample Hypothesis-Testing Procedures

Case	Null Hypothesis	Test Statistic	Alternative Hypothesis	Fixed Significance Level Criteria for Rejection	P - value	O.C. Curve Parameter	O.C. Curve Appendix Chart VII	
1.	$H_0: \mu = \mu_0$	$\bar{x} - \mu_0$	$H_1: \mu \neq \mu_0$	$ z_0 > z_{\alpha/2}$	$P = 2[1 - \Phi(\mathbf{z}_0)]$	$d = \mu - \mu_0 /\sigma$	a, b	
	σ^2 known	$z_0 = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$	$H_1: \mu > \mu_0$	$z_0 > z_\alpha$	Probability above z_0 $P = 1 - \Phi(z_0)$	$d = (\mu - \mu_0)/\sigma$	c,d	
			$H_1: \mu < \mu_0$	$z_0 < -z_\alpha$	Probability below z_0 $P = \Phi(z_0)$	$d = (\mu_0 - \mu)/\sigma$	c,d	
2.	$H_0: \mu = \mu_0$ σ^2 unknown	$t_0 = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$	$H_1: \mu \neq \mu_0$	$ t_0 > t_{\alpha/2, n-1}$	Sum of the probability above $ t_0 $ and below $- t_0 $	$d = \mu - \mu_0 /\sigma$	e, f	
			$H_1: \mu > \mu_0$	$t_0 > t_{\alpha,n-1}$	Probability above t ₀	$d = (\mu - \mu_0)/\sigma$	g,h	
			$H_1: \mu < \mu_0$	$t_0 < -t_{\alpha,n-1}$	Probability below t_0	$d = (\mu_0 - \mu)/\sigma$	g, h	
3.	$H_0: \sigma^2 = \sigma_0^2$	$x_0^2 = \frac{(n-1)s^2}{\sigma_0^2}$	$H_1: \sigma^2 \neq \sigma_0^2$	$\chi_0^2 > \chi_{\alpha/2, n-1}^2$ or $\chi_0^2 < \chi_{1-\alpha/2, n-1}^2$	See text Section 9.4.	$\lambda = \sigma/\sigma_0$	i, j	
			$H_1: \sigma^2 > \sigma_0^2$	$\chi_0^2 > \chi_{\alpha,n-1}^2$		$\lambda = \sigma/\sigma_0$	k, l	
			$H_1: \sigma^2 < \sigma_0^2$	$\chi_0^2 < \chi_{1-\alpha, n-1}^2$		$\lambda = \sigma/\sigma_0$	m, n	
4.	$H_0: p = p_0$	$y - np_0$	$H_1: p \neq p_0$	$ z_0 > z_{\alpha/2}$	$p = 2[1 - \Phi(z_0)]$	3–4	3-4	
	$n_0 \cdot p - p_0$	$z_0 = \frac{x - np_0}{\sqrt{np_0(1 - p_0)}}$	$H_1: p \neq p_0$ $H_1: p > p_0$	$z_0 > z_\alpha$	Probability above z_0 $p = 1 - \Phi(z_0)$	3–4	3–4	
			$H_1: p < p_0$	$z_0 < -z_\alpha$	Probability below z_0 $P = \Phi(z_0)$	3–4	3-4	

Summary of One-Sample Confidence Interval Procedures

Case	Problem Type	Point Estimate	Two-sided $100(1-\alpha)$ Percent Confidence Interval
1.	Mean μ , variance σ^2 known	\overline{x}	$\overline{x} - z_{\alpha/2} \sigma / \sqrt{n} \le \mu \le \overline{x} + z_{\alpha/2} \sigma / \sqrt{n}$
2.	Mean μ of a normal distribution, variance σ^2 unknown	\bar{x}	$\overline{x} - t_{\alpha/2, n-1} s / \sqrt{n} \le \mu \le \overline{x} + t_{\alpha/2, n-1} s / \sqrt{n}$
3.	Variance σ^2 of a normal distribution	s^2	$\frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}}$
4.	Proportion or parameter of a binomial distribution p	\hat{p}	$\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \le p \le \hat{p} + z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$

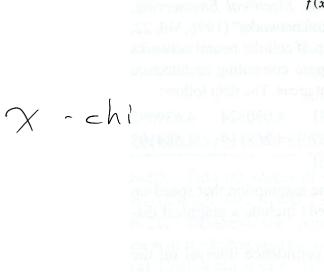
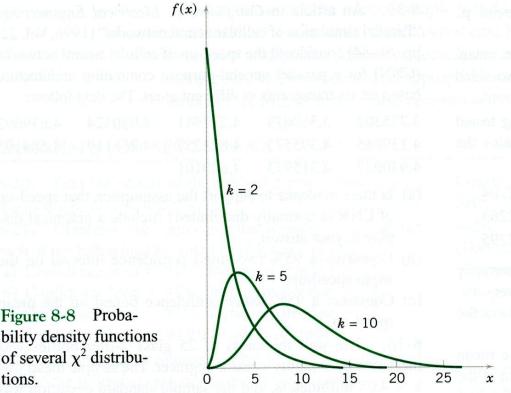


Figure 8-8 Probability density functions of several χ^2 distributions.



image

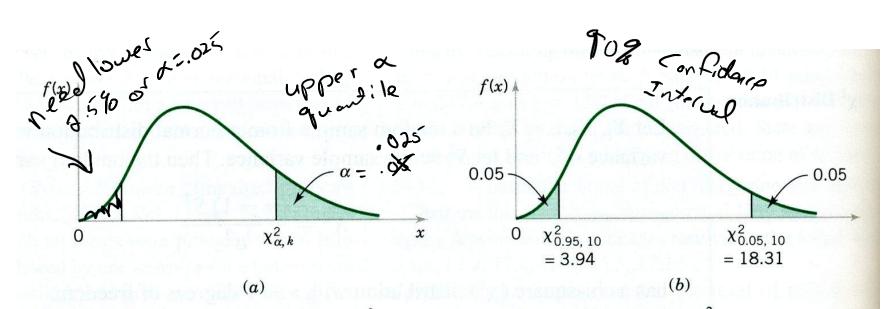


Figure 8-9 Percentage point of the χ^2 distribution. (a) The percentage point $\chi^2_{\alpha,k}$. (b) The upper percentage point $\chi^2_{0.05,10} = 18.31$ and the lower percentage point $\chi^2_{0.95,10} = 3.94$.

Confidence Intervals for σ^2 and σ (% σ^3)

If s^2 is the sample variance from a random sample of n observations from a normal distribution with unknown variance σ^2 , then a $100(1-\alpha)\%$ confidence interval on σ^2 is

where $\chi^2_{\alpha/2,n-1}$ and $\chi^2_{1-\alpha/2,n-1}$ are the upper and lower $100\alpha/2$ percentage points of the χ^2 - 166 (1- α) & distribution with n-1 degrees of freedom (1.5. on σ)

$$\frac{(n-1)S^2}{\chi^2}$$

$$\frac{\sqrt{2}}{\sqrt{2}}$$

$$\frac{\sqrt{2}}{\sqrt{1-\alpha \kappa_1 n_4}}$$

Problem 8-36 (6th edition)

1/8-36. The sugar content of the syrup in canned peaches normally distributed. A random sample of n = 10 cans yield a sample standard deviation of s = 4.8 milligrams. Find 95% two-sided confidence interval for σ .

95% two-sided confidence interval for
$$\sigma$$
.

$$\frac{(n-1)S^{2}}{\chi^{2}_{2}} \neq 3 \neq \frac{(n-1)S^{2}}{\chi^{2}_{1}} \neq 3 \neq \frac{(n-1)S^{2}}{\chi^{2}_{1}} \neq 3 \neq \frac{(n-1)S^{2}}{\chi^{2}_{1}} \neq 3 \neq \frac{(n-1)(4.8)^{2}}{\chi^{2}_{1}} \neq \frac{(n-1)(4.8)^{2}}{\chi^{2}_{1}} \neq \frac{(n-1)(4.8)^{2}}{\chi^{2}_{1}} \neq \frac{(n-1)(4.8)^{2}}{\chi^{2}} \neq \frac{(n-1)(4.8)^{2}}{\chi^{2}_{1}} \neq \frac{(n-1)(4.8)^{2}}{\chi^{2}_{1}} \neq \frac{(n-1)(4.8)^{2}}{\chi^{2}_{1}} \neq \frac{(n-1)(4.8)^{2}}{\chi^{2}} \neq \frac{(n-1)(4.8)^{2}}{\chi^{2}} \neq$$

$$N = 10$$

 $S = 1.8 mg$
 $X = .05$
 $X^{2}.05,9 = 19.02$
 $A^{2}.975,9 = 2.78$

image

Table III	D	D. 4/							1		
able III	Percentage	Point	of the Chi-S	Squared Dis	tribution					1	100000000000000000000000000000000000000
v	.995	.990	.975	.950	.900	.500	.100	.050	.025	.010	.005
1	+00.	+00.	+00.	+00.	.02	.45	2.71	3.84	5.02	6.63	7.88
2	.01	.02	.05	.10	.21	1.39	4.61	5.99	7.38	9.21	10.60
3	.07	.11	.22	.35	.58	2.37	6.25	7.81	9.35	11.34	12.84
4	.21	.30	.48	.71	1.06	3.36	7.78	9.49	11.14	13.28	14.86
5	.41	.55	.83	1.15	1.61	4.35	9.24	11.07	12.83	15.09	16.75
6	.68	.87	1.24	1.64	2.20	5.35	10.65	12.59	14.45	16.81	18.55
7	.99	1.24	1.69	2.17	2.83	6.35	12.02	14.07	16.01	18.48	20.28
8	1.34	1.65	2.18	2.73	3.49	7.34	13.36	15.51	17.53	20.09	21.96
9	1.73	2.09	2.70	3.33	4.17	8.34	14.68	16.92	19.02	21.67	23.59
	2.16	2.56	3.25	3.94	4.87	9.34	15.99	18.31	20.48	23.21	25.19
11	2.60	3.05	3.82	4.57	5.58	10.34	17.28	19.68	21.92	24.72	26.76
12	3.07	3.57	4.40	5.23	6.30	11.34	18.55	21.03	23.34	26.22	28.30
13	3.57	4.11	5.01	5.89	7.04	12.34	19.81	22.36	24.74	27.69	29.82
14	4.07	4.66	5.63	6.57	7.79	13.34	21.06	23.68	26.12	29.14	31.32
15	4.60	5.23	6.27	7.26	8.55	14.34	22.31	25.00	27.49	30.58	32.80
16	5.14	5.81	6.91	7.96	9.31	15.34	23.54	26.30	28.85	32.00	34.27
17	_ 5.70	6.41	7.56	8.67	10.09	16.34	24.77	27.59	30.19	33.41	2)2
18	6.26	7.01	8.23	9.39	10.87	17.34	25.99	28.87	31.53	34.81	37.16
19	6.84	7.63	8.91	10.12	11.65	18.34	27.20	30.14	32.85	36.19	38.58
20	7.43	8.26	9.59	10.85	12.44	19.34	28.41	31.41	34.17	37.57	40.00
21	8.03	8.90	10.28	11.59	13.24	20.34	29.62	32.67	35.48	38.93	41.40
22	8.64	9.54	10.98	12.34	14.04	21.34	30.81	33.92	36.78	40.29	42.80
23	9.26	10.20	11.69	13.09	14.85	22.34	32.01	35.17	38.08	41.64	44.18
24	9.89	10.86	12.40	13.85	15.66	23.34	33.20	36.42	39.36	42.98	45.56
25	10.52	11.52	13.12	14.61	16.47	24.34	34.28	37.65	40.65	44.31	46.93
26	11.16	12.20	13.84	15.38	17.29	25.34	35.56	38.89	41.92	45.64	48.29
27	11.81	12.88	14.57	16.15	18.11	26.34	36.74	40.11	43.19	46.96	49.65
28	12.46	13.57	15.31	16.93	18.94	27.34	37.92	41.34	44.46	48.28	50.99
29	13.12	14.26	16.05	17.71	19.77	28.34	39.09	42.56	45.72	49.59	52.34
30	13.79	14.95	16.79	18.49	20.60	29.34	40.26	43.77	46.98	50.89	53.67
40	20.71	22.16	24.43	26.51	29.05	39.34	51.81	55.76	59.34	63.69	66.77
50	27.99	29.71	32.36	34.76	37.69	49.33	63.17	67.50	71.42	76.15	79.49
60	35.53	37.48	40.48	43.19	46.46	59.33	74.40	79.08	83.30	88.38	91.95
70	43.28	45.44	48.76	51.74	55.33	69.33	85.53	90.53	95.02	100.42	104.22
80	51.17	53.54	57.15	60.39	64.28	79.33	96.58	101.88	106.63	112.33	116.32
90	59.20	61.75	65.65	69.13	73.29	89.33	107.57	113.14	118.14	124.12	128.30
100	67.33	70.06	74.22	77.93	82.36	99.33	118.50	124.34	129.56	135.81	140.17

 ν = degrees of freedom.

image

$$\frac{(n-1)5^{2}}{\chi^{2}_{\alpha/2,1n-1}} = L \leq G^{2} \leq L = \frac{(n-1)5^{2}}{\chi^{2}_{1-\alpha/p,n-1}}$$

One-sided confidence bounds

- Are easy to construct
- Use only the appropriate upper or lower bound
- Change $\chi^2_{\alpha/2,n-1}$ to $\chi^2_{\alpha,n-1}$ or $\chi^2_{1-\alpha/2,n-1}$ to $\chi^2_{1-\alpha,n-1}$

- See eqn (8-20) on page 184

Lower bound (n-1)5² XX

 $\frac{\sqrt{pe}}{\sqrt{2}}$

Chapter 8, Case 3 Practice Problems

Question 2 (2 points)

Consider a sample of size 16 from a normal distribution with mean 122.7 and sample standard deviation 44.66. What is the value of a two-sided 98.0 % confidence interval for the variance?

 $\alpha = .02$ N = 16

(978.343,5720.408)

(1058.66,5002.966)

(93.643,151.757)

(934.929,5149.352)

(31.278,75.633)

$$\gamma_{\alpha/2,m}^2 = \gamma_{-01,15}^2 = 55235058$$

7/2/M

$$= 7.99, 15 = 5.23$$

 $\frac{(n-1)5^2}{2}$

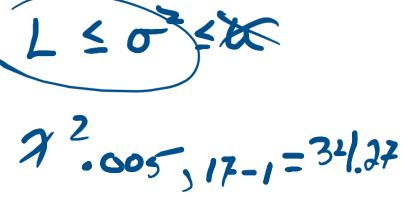
(16-1) (44.66) < 025

< 544 5720.408

Question 4 (2 points) Listen Consider a sample of standard deviation 1 the variance?

Consider a sample of size 17 from a normal distribution with mean 88.8 and sample standard deviation 15.56. What is the value of lower 99.5 % confidence bound on

106.248
77.777
10.632
113.038
108.45



113.038502

$$5 \approx \frac{(17-1)(.25)^2}{9.31} = .3277$$

Large-Sample CI for a Population Proportion (Case 4)

- Recall from chapter 4, that the sampling distribution of \hat{P} is approximately normal with mean p and variance p(1-p)/p, if n is not too close to either 0 or 1 and if n is relatively large.
- Typically, we require both $np \ge 5$ and $n(1-p) \ge 5$ f n is large, the distribution of

$$Z = \frac{X - np}{\sqrt{np(1-p)}} = \frac{\hat{P} - p}{\sqrt{\frac{p(1-p)}{n}}}$$
 is approximately standard normal.

If \hat{p} is the proportion of observations in a random sample of size n that belongs to a class of interest, an approximate $100(1-\alpha)\%$ confidence interval on the proportion p of the population that belongs to this class is

$$\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \le p \le \hat{p} + z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

where $z_{\alpha/2}$ is the upper $\alpha/2$ percentage point of the standard normal distribution

Other Considerations

– We can select a sample so that we are $100(1-\alpha)\%$ confident that error $E=|p-\widehat{P}|$ using

$$n = \left(\frac{Z_{\alpha/2}}{E}\right)^2 p(1-p)$$

An upper bound on is given by

$$n = \left(\frac{Z_{\alpha/2}}{E}\right)^2 (0.25)$$

One-sided confidence bounds are given in eqn (8-26) on page 187

Guidelines for Constructing Confidence Intervals

Review excellent guide given in Table 8-1

Other Interval Estimates

- When we want to predict the value of a single value in the future, a prediction interval is used
- A **tolerance interval** captures $100(1 \alpha)\%$ of observations from a distribution

Prediction Interval for a Normal Distribution

- Excellent discussion on pages 189 190
- A $100(1-\alpha)\%$ PI on a single future observation from a normal distribution is given by

$$\bar{x} - t_{\alpha/2, n-1} s \sqrt{1 + \frac{1}{n}} \le X_{n+1}$$

$$(\bar{x} + t_{\alpha/2, n-1} s \sqrt{1 + \frac{1}{n}})$$

Tolerance Intervals for a Normal Distribution

– A **tolerance interval** to contain at least $\gamma\%$ of the values in a normal population with confidence level $100(1-\alpha)\%$ is $\bar{x}-ks$, $\bar{x}+ks$

where k is a tolerance interval factor for the normal distribution found in appendix A Table XII. Values are given for $1-\alpha$ =0.9, 0.95 and 0.99 confidence levels and for $\gamma=.90$, .95, and .99% probability of coverage

 One-sided tolerance bounds can also be computed. The factors are also in Table XII