

Lecture 19, April 3

- Topics:
 - Chapter 5: CLT
 - Chapter 6: Multivariate Statistical Analysis

 - Chapter 7: Definitions Chapter 8: Interval Estimation \(\frac{3}{2} \) Sobs of Pachice signments:

Assignments:

- Technical Report One due today
- Linear Combination Practice Problems due today
- Linear Combination Quiz (assigned 4/3/25, due 4/8/25)
- Attendance
- Questions?

MANE 3332.03

Handouts

- Chapter 5
 - Chapter 5 Slides
 - Chapter 5 Slides marked
- Chapter 6
 - Chapter 6 Slides
 - Chapter 6 Slides marked
- Chapter 7
 - Chapter 7 slides
 - Chapter
- Chapter 8
 - Chapter 8 slides
 - Chapter 8 slides marked
- Final Exam Handouts

Class Schedule

Thursday Lecture
4/3: Chapters 7 & 8
4/10: Chapter 8, Case 2
4/17: Chapter 9, Case 1
4/24: Chapter 9, Case 3
5/1: Chapter 11
5/8: Dead Day (no class)
4 4

10 Sessions plus final exam

Final Exam: Tuesday May 13, 2025 10:15 am - 12:00 pm

4/35

MANE 3332.03

Chapter 8 Introduction

- Intervals are another method of performing estimation
- A confidence interval is an interval estimate on a population parameter (primary focus of this chapter)

 **Normal Confidence interval is an interval estimate on a population parameter (primary focus of this chapter)
- Three types of interval estimates
 - A confidence intervals bounds population or distribution parameters
 - A tolerance interval bounds a selected proportion of a distribution
 - A prediction interval bounds future observations from the population or distribution
- Interval estimates, especially confidence intervals are commonly used in science and engineering

Tolorance Interval I on 95% Gorlide I Alad 80% of the distr.

is between 50 and 80.

Confidence Interval on the Mean of a normal distribution, variance known (Case 1)

- Suppose that X_1, X_2, \ldots, X_n is a random sample from a normal population with unknown mean μ and known variance σ^2
- A general expression for a confidence interval is

$$P[L \le \mu \le U] = 1 - \alpha$$

$$I < \mu < u$$

• A $100(1-\alpha)\%$ confidence interval for the mean of a normal distribution with variance known is

Improctical Case
Usuelly You
don't Know
Variance

shistis ore

Problem 8-12,part a (6th edition)

- 8-12. The life in hours of a 75-watt light bulb is known to be normally distributed with $\sigma = 25$ hours. A random sample of 20 bulbs has a mean life of $\bar{x} = 1014$ hours.
- (a) Construct a 95% two-sided confidence interval on the mean life.
- (b) Construct a 95% lower-confidence bound on the mean life.

Figure 2: image

Parta) X-Zax Tr < PC X+ Za/2 Vn 1614-1.96 25 / NC 1014+ 1.96 25 1814-10.75673 < NC 1014+10.95673

1003.04327 < N < 1024.75673

MANE 3332.03

Interpreting Confidence Intervals

Montgomery gives the following statement regarding the correct interpretation of confidence intervals.

The correct interpretation lies in the realization that a CI is a random interval because in the probability statement defining the end-points of the interval, L and U are random variables. Consequently, the correct interpretation of a $100(1-\alpha)\%$ CI depends on the relative frequency view of probability. Specifically, if an infinite number of random samples are collected and a $100(1-\alpha)\%$ confidence interval for μ is computed from each sample, $100(1-\alpha)\%$ of these intervals will contain the true value of μ .

9 / 35

8 / 35

Detail) 95 & C. I.

One-sided Confidence Bounds

It is possible to construct on-sided confidence bounds

• A $100(1-\alpha)\%$ upper-confidence bound for μ is

$$\mu \le u = \bar{x} + z_{\alpha} \frac{\sigma}{\sqrt{n}}$$

• A $100(1-\alpha)\%$ lower-confidence bound for μ is

$$\bar{x} - z_{\alpha} \frac{\sigma}{\sqrt{n}} = I \le \mu$$

10/35

MANE 3332.03

Sample Size Considerations

If \bar{x} is used as an estimate of μ , we can be $100(1-\alpha)\%$ confident that the error $|\bar{x}-\mu|$ will not exceed a specified amount E when the sample size is

$$n = \left(\frac{z_{\alpha/2}\sigma}{E}\right)^2$$

Problem 8–12,part b (6th edition)

- 8-12. The life in hours of a 75-watt light bulb is known to be normally distributed with $\sigma=25$ hours. A random sample of 20 bulbs has a mean life of $\bar{x}=1014$ hours.
- (a) Construct a 95% two-sided confidence interval on the mean life.
- (b) Construct a 95% lower-confidence bound on the mean life.

Figure 3: image

12/35

MANE 3332.03

A Large Sample CI for $\boldsymbol{\mu}$

- When n is large (say greater than or equal to 40), the central limit theorem can be used
- It states that $\frac{\bar{x}-\mu}{\sigma/\sqrt{n}}$ is approximately a standard normal random variable.
- Thus, we can replace the quantity σ/\sqrt{n} with S/\sqrt{n} and still use the quantiles of the normal distribution to construct a confidence interval.

$$\bar{x} - z_{\alpha/2} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + z_{\alpha/2} \frac{s}{\sqrt{n}}$$

• What assumption did we relax and why?

Chapter 8, Case 1 Practice Problems

14/35

MANE 3332.03

Confidence Interval for the mean of Normal distribution with variance unknown (Case 2)

The t distribution

Definition.

Let X_1, X_2, \ldots, X_n be a random sample from a normal distribution with unknown mean μ and unknown variance σ^2 . The random variable

$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}}$$

has a t distribution with n-1 degrees of freedom.

- A table of percentage points (quantiles) is given in Appendix A Table 5
- Figure 8-4 on page 180 shows the relationship between the *t* and normal distributions.
- Figure 8-5 explains the percentage points of the t distribution

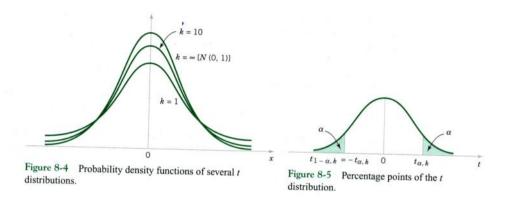


Figure 4: image

16/35

MANE 3332.03

Confidence interval definition

• Using the t distribution it is possible to construct CIs If \bar{x} and s are the mean and standard deviation of a random sample from a normal distribution with unknown variance σ^2 , a $100(1-\alpha)\%$ confidence interval on μ is given by

$$\bar{x} - t_{\alpha/2, n-1} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + t_{\alpha/2, n-1} \frac{s}{\sqrt{n}}$$

where $t_{\alpha/2,n-1}$ is the upper $100(\alpha/2)$ percentage point of the t distribution with n-1 degrees of freedom.

Problem 8-30 (6th edition)

(February 1988, p. 33) describes several characteristics of fuel rods used in a reactor owned by an electric utility in Norway. Measurements on the percentage of enrichment of 12 rods were reported as follows:

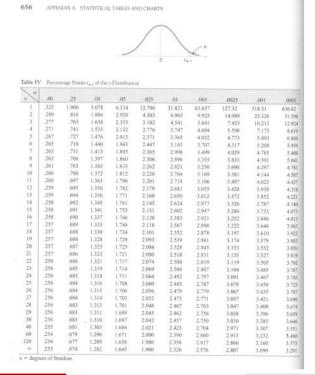
2.94	3.00	2.90	2.75	3.00	2.95
2.90	2.75	2.95	2.82	2.81	3.05

- (a) Use a normal probability plot to check the normality assumption.
- (b) Find a 99% two-sided confidence interval on the mean percentage of enrichment. Are you comfortable with the statement that the mean percentage of enrichment is 2.95 percent? Why?

Figure 5: image

18/35

MANE 3332.03



ЛΑ				

One-sided confidence bounds

- Are easy to construct
- Use only the appropriate upper or lower bound
- ullet Change $t_{lpha/2,n-1}$ to $t_{lpha,n-1}$

20 / 35

MANE 3332.03

Chapter 8, Case 2 Practice Problems

Confidence Interval for σ^2 and σ (Case 3)

- Section 8-3 presents a CI for σ^2 or σ
- Requires the χ^2 (chi-squared) distribution

Let X_1, X_2, \ldots, X_n be a random sample from a normal distribution with mean μ and variance σ^2 and let S^2 be the sample variance. Then the random variable

$$\chi^2 = \frac{(n-1)S^2}{\sigma^2}$$

has a chi-square (χ^2) distribution with n-1 degrees of freedom

- A table of the upper percentage points of the χ^2 distribution are given in Table 4 in the appendix
- \bullet Figure 8-9 on page 183 explains the percentage points of the χ^2 distribution

22 / 35

MANE 3332.03

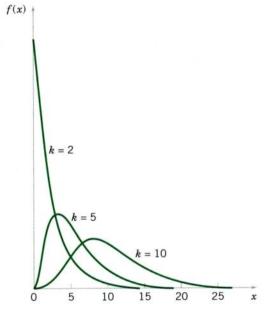


Figure 8-8 Probability density functions of several χ^2 distributions.

Figure 7: image

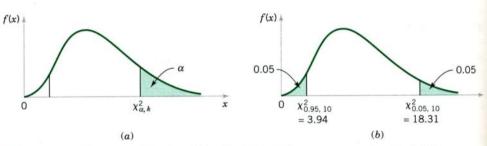


Figure 8-9 Percentage point of the χ^2 distribution. (a) The percentage point $\chi^2_{\alpha,k}$. (b) The upper percentage point $\chi^2_{0.05,10} = 18.31$ and the lower percentage point $\chi^2_{0.95,10} = 3.94$.

Figure 8: image

24/35

MANE 3332.03

Confidence Intervals for σ^2 and σ

If s^2 is the sample variance from a random sample of n observations from a normal distribution with unknown variance σ^2 , then a $100(1-\alpha)\%$ confidence interval on σ^2 is

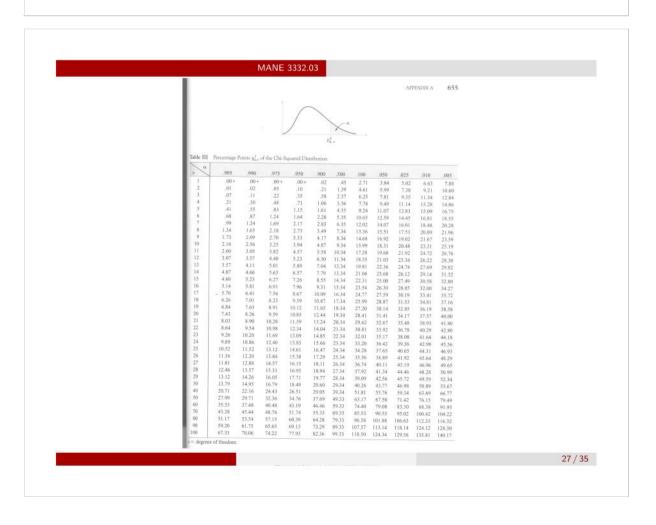
$$\frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}}$$

where $\chi^2_{\alpha/2,n-1}$ and $\chi^2_{1-\alpha/2,n-1}$ are the upper and lower $100\alpha/2$ percentage points of the χ^2 -distribution with n-1 degrees of freedom

Problem 8-36 (6th edition)

 $\sqrt{8-36}$. The sugar content of the syrup in canned peaches normally distributed. A random sample of n=10 cans yith a sample standard deviation of s=4.8 milligrams. Find 95% two-sided confidence interval for σ .

Figure 9: image



One-sided confidence bounds

- Are easy to construct
- Use only the appropriate upper or lower bound
- Change $\chi^2_{\alpha/2,n-1}$ to $\chi^2_{\alpha,n-1}$ or $\chi^2_{1-\alpha/2,n-1}$ to $\chi^2_{1-\alpha,n-1}$ See eqn (8-20) on page 184

28 / 35

MANE 3332.03

Chapter 8, Case 3 Practice Problems

Large-Sample CI for a Population Proportion (Case 4)

- Recall from chapter 4, that the sampling distribution of \widehat{P} is approximately normal with mean p and variance p(1-p)/p, if n is not too close to either 0 or 1 and if n is relatively large.
- Typically, we require both $np \ge 5$ and $n(1-p) \ge 5$

f n is large, the distribution of

$$Z = \frac{X - np}{\sqrt{np(1 - p)}} = \frac{\widehat{P} - p}{\sqrt{\frac{p(1 - p)}{n}}}$$

is approximately standard normal.

30 / 35

MANE 3332.03

If \hat{p} is the proportion of observations in a random sample of size n that belongs to a class of interest, an approximate $100(1-\alpha)\%$ confidence interval on the proportion p of the population that belongs to this class is

$$\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \leq p \leq \hat{p} + z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

where $z_{\alpha/2}$ is the upper $\alpha/2$ percentage point of the standard normal distribution

Other Considerations

• We can select a sample so that we are $100(1-\alpha)\%$ confident that error $E=|p-\widehat{P}|$ using

$$n=\left(\frac{z_{\alpha/2}}{E}\right)^2p(1-p)$$

• An upper bound on is given by

$$n = \left(\frac{z_{\alpha/2}}{E}\right)^2 (0.25)$$

• One-sided confidence bounds are given in eqn (8-26) on page 187

32 / 35

MANE 3332.03

Guidelines for Constructing Confidence Intervals

• Review excellent guide given in Table 8-1

Other Interval Estimates

- When we want to predict the value of a single value in the future, a prediction interval is used
- A **tolerance interval** captures $100(1-\alpha)\%$ of observations from a distribution

Prediction Interval for a Normal Distribution

- Excellent discussion on pages 189 190
- A $100(1-\alpha)\%$ PI on a single future observation from a normal distribution is given by

•

$$\bar{x} - t_{\alpha/2, n-1} s \sqrt{1 + \frac{1}{n}} \le X_{n+1} \le \bar{x} + t_{\alpha/2, n-1} s \sqrt{1 + \frac{1}{n}}$$

34 / 35

MANE 3332.03

Tolerance Intervals for a Normal Distribution

• A tolerance interval to contain at least $\gamma\%$ of the values in a normal population with confidence level $100(1-\alpha)\%$ is

$$\bar{x} - ks, \bar{x} + ks$$

where k is a tolerance interval factor for the normal distribution found in appendix A Table XII. Values are given for $1-\alpha{=}0.9$, 0.95 and 0.99 confidence levels and for $\gamma=.90, .95,$ and .99% probability of coverage

 One-sided tolerance bounds can also be computed. The factors are also in Table XII

95% C.T. -> «=.05

Za/2 = Z 005/2 = Z.025

Pasiost way to find Zayz is to use the L-tables

Z.005 = +00,-025 = 1.96

Confidence bound

Tuesday, April 8, 2025 11:28 AM

100(1-2/2 (.7.

R < M u

X-20/2 / X+Za/2 //n

Japer Bord

Lover Boul X-Z /Jn = N < X

PEX+Z Ton

Tuesday, April 8, 2025 11:35 AM

95% Lower Confidence on N

7=1014, 5=25, n=20

 $\sqrt{x} - 2a \sqrt{n} \le N$ $1014 - 7.05 \sqrt{30} \le N$ $\sqrt{n} = N$

 $(1-\alpha) = .95$

OUESTION 1

QUESTION 1

Consider a sample of size 15 from a normal distribution with mean 124.8 and sigma 15.69. What is the value of a two-sided 99.9 % confidence interval for the mean?

Screen clipping taken: 4/8/2025 11:46 AM

1001-2) Z = 99.9 1-x = .999 x = .001

X-Z4/2 /on = NS X+Za/2 ofon

Z.001/2 = Z.005 = +0,,0005 = 3.291

Chapter 8, Case 1 PP

Tuesday, April 8, 2025 11:49 AM

QUESTION 4

Consider a sample of size 10 from a normal distribution with mean 16.7 and sigma 3.65. What is the value of a 90.0 % upper-confidence bound for the mean?

- O mu <=18.599
- O mu<=18.407
- O mu<=18.891
- O mu <=17.168
- O mu<=22.099

O mu <=18.179

Screen clipping taken: 4/8/2025 11:49 AM

N < X+Za Von

need Z, = to, = 1.282

100 (1-a) 8-90 g

(1-a) =. 9

Chapter 8, Case 1 PP

Tuesday, April 8, 2025 11:52 AM

QUESTION 5	\wedge	X	0					90
Consider a sample of s	ize 30 from a normal distr	ibution with mean 30.8 and s	igma 3.85. What is	s the value o	f a 99.0 % lower-confidence	bound for the mean?	100/1-	x\8 = 99
O mu>=24.504							1 - 9 1	-) 0 / /
O mu>=29.651),		C	00
O mu>=29.527			0 <	NA	\times		(1-	$\alpha = .99$
O mu >=30.501			\ -				•	,
O mu >=28.989					. 1			/ - 01
O mu >=29.165			-	5-1	2 N			d =,01
Screen clipping taken: 4/8/202	5 11:52 AM	>.	- Za	Th				
		2	o = 0		£00,-01	_ 2.	326	
) -01			

40 on midterm $-60(\frac{1}{4}) = -15$