Section 1

MANE 3332.03

Subsection 1

Chapter Seven

Handouts

- Chapter 7 Slides
- Chapter 7 Slides marked

Chapter 7 Overview

- Chapter 7 contains a detailed explanation of point estimates for parameters
- Much of this chapter is of a highly statistical nature and will not be covered in this course
- Key concepts we will discuss are:
 - Statistical inference
 - Statistic
 - Sampling distribution
 - Point estimator
 - Unbiased estimate
 - MVUE estimator
 - Central limit theorem

Statistical Inference

- Montgomery gives the following description of statistical inference.
 The field of statistical inference consists of those methods used to
 make decisions or to draw conclusions about a population. There
 methods utilize the information contained in a sample from the
 population in drawing conclusions. This chapter begins our study
 of the statistical methods used for inference and decision making.
- Statistical inference may be divided into two major areas: parameter estimation and hypothesis testing

Point Estimate

- Montgomery states that "In practice, the engineer will use sample data to compute a number that is in some sense a reasonable value (or guess) of the true mean. This number is called a **point estimate**."
- Discuss examples
- A formal definition of a point estimate is A **point estimate** of some population parameter θ is a single numerical value $\hat{\theta}$ of a statistic $\hat{\Theta}$. The statistic $\hat{\Theta}$ is called the point estimate.
- Notice the use of the "hat" notation to denote a point estimate

Statistic

- Point estimate requires a sample of random observations, say X_1, X_2, \dots, X_n
- Any function of the sampled random variables is called a statistic
- The function of the random variables is itself a random variable
- Thus, the sample mean \bar{x} and the sample variance s^2 are both statistics and random variables

Properties of point estimators

- We would like point estimates to be both accurate and precise
- An unbiased estimator addresses the accuracy criteria
- A minimum variance unbiased estimator addresses the precision criteria

Unbiased Estimator

 \bullet The point estimator $\hat{\Theta}$ is an ${\bf unbiased}$ ${\bf estimator}$ for the parameter θ if

$$E\left(\hat{\Theta}\right) = \theta$$

If the point estimator is not unbiased, then the difference

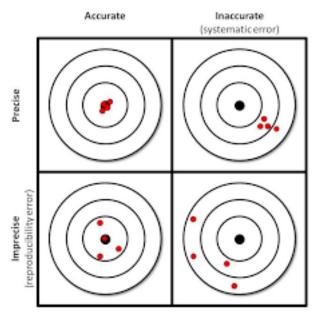
$$E\left(\hat{\Theta}\right) - \theta$$

is called the **bias** of the estimator $\hat{\Theta}$

MVUE

- Montgomery gives the following definition of a minimum variance unbiased estimator (MVUE) If we consider all unbiased estimators of θ , the one with the smallest variance is called the minimum variance unbiased estimator
- ullet An import fact is that the sample mean $ar{x}$ is the MVUE for μ when the data comes from a normal distribution

Accuracy vs. Precision



Sampling Distribution

 The probability distribution of a statistic is called a sampling distribution

Central Limit Theorem

• Definition of the Central Limit Theorem is If X_1, X_2, \ldots, X_n is a random sample of size n taken from a population (either finite or infinite) with mean μ and finite variance σ^2 , and if \overline{X} is the sample mean, the limiting form of the distribution of

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

as $n \to \infty$, is the standard normal distribution

- Important result because for sufficiently large n, the sampling distribution of \overline{X} is normally distribution
- This is a fundamental result that will be used extensively in the next four chapters of the textbook.