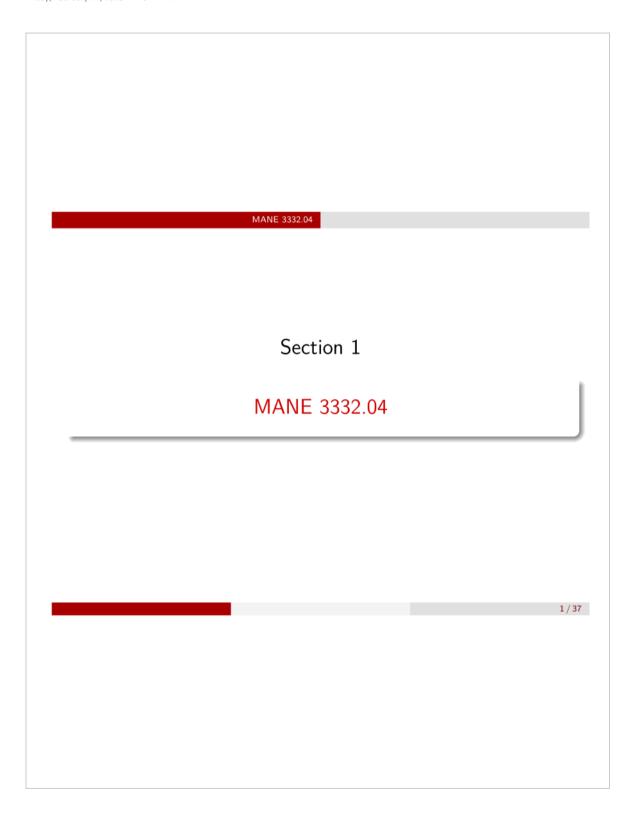
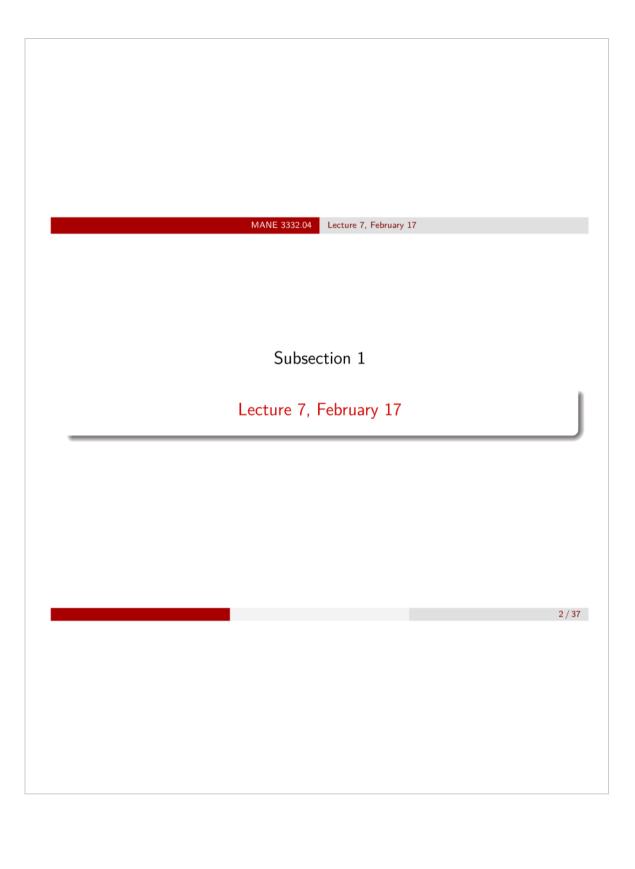
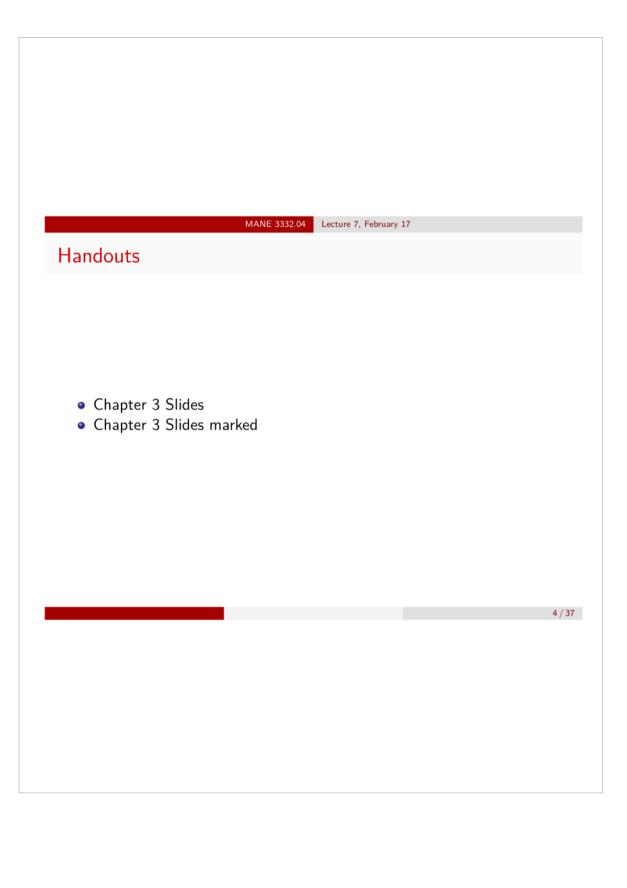
Printout

Friday, February 14, 2025 9:44 AM





MANE 3332.04 Lecture 7, February 17 Agenda • Start Chapter 3 lecture • New: CDF Practice Problems (assigned 2/17/2025, due 2/19/2025 11:59pm)



Random Variable

- A random variable is a function that assigns a number real number to each outcome in the sample space of a random experiment.
- A discrete random variable is a random variable with a finite or (countably infinite) range. Cont or Classify
 - Examples include number of scratches on a surface, proportion of defective parts among 1000 tested, number of transmitted bits received in error
- A **continuous** random variable is a random variable with an interval of real numbers for its range. real numbers for its range.
 - Examples include electrical current, length, pressure, temperature, time area ureler a curve voltage, weight

regions

Definitions

There are three terms commonly used in describing the mathematical relationship between events and probabilities for discrete random variables

Probability distribution

of a random variable is a description of the probabilities associated For a random variable X with possible values x_1, x_2, \ldots, x_n is $f(x_i) = P(X = x_i)$ ulative distribution function

of a random

robability mass function

R Cumulative distribution function CDF

of a random variable X is

6/37

 $\mathbb{F}(x) = \mathbb{P}(x \leq x) = \sum_{x_i \leq x} f(x_i)$

Probability Distributions

Can be described in three different ways:

- Graphically using a histogram,
- ② in a tabular manner, see problem 3.1.13 on page p-15 or,
- 3 using a mathematical function (PMF), see problem 3.1.11 on page -7 most common usage, it scales

Probability Mass Functions

$$f(x) = P(X = x)$$

A PMF for a discrete random variable X with possible values of

- x_1, x_2, \ldots, x_n is function with the following properties: $f(x_i) \ge 0$ Non-negative $\sum_{i=1}^n \chi_i = (\chi_i + \chi_2 + \cdots + \chi_n)$ $\sum_{i=1}^n f(x_i) = 1$ -7 Sum of all probability of all events must equal
 - $f(x_i) = P(X = x_i)$

Cumulative Distribution Function

There are three special properties that a function must satisfy to be a cumulative distribution function (CDF):

- $0 \le F(x) \le 1$

Using a CDF

- Knowledge of the CDF can simplify calculating probabilities
- Example consider a sample of 20 items and we count the number of X630,1, ..., 203 defects, X

• Find
$$P(X > 8)$$

$$P(X > 8) = \sum_{i=9}^{20} P(X = i) = \begin{cases} 30 & \text{f(i)} \\ 50 & \text{f(i)} \end{cases}$$

$$= F(20) - F(8)$$

This can also be written another way

$$P(X > 8) = 1 - P(X \le 8)$$

= 1 - F(8)

 \bullet Care must be taken when using CDF regarding less than or less than or $\frac{10/37}{}$

CDF Practice Problems

$$P(X>8) = 1 - F(8) - 7 P(X>a) = 1 - F(a)$$

$$P(X>3) = 1 - F(2)$$

$$P(X \le 4) = F(4)$$

$$P(X \le 1a) = F(9)$$

$$P(X=4a) = F(4a) - F(41) - 7 P(X=b) = F(b)$$

$$F(A) = F(A) - F(A) - F(A) = F(A) - F(A)$$

$$SAS = \frac{3015...425}{3015...425}, \frac{3015...415}{3015...415}$$

attendance 2/17 -> 1, A

Mean and Variance of a Discrete Random Variable

• The mean or expected value of a random variable (denoted E(X)) is

N. Mu

value of a random variable (denoted
$$E(X)$$
) is
$$\mu = E(X) = \sum_{i=1}^{n} x_i f(x_i)$$

$$\sum_{i=1}^{n} x_i f(x_i)$$

$$\sum_{i=1}^{n} x_i f(x_i)$$

$$\sum_{i=1}^{n} x_i f(x_i)$$

• The variance of X is

$$\sigma^2 = V(X) = E(X - \mu)^2 = \sum_{i=1}^n (x_i - \mu)^2 f(x_i) = \sum_{i=1}^n x_i^2 f(x_i) - \mu^2$$
• The standard deviation of X is

$$\sqrt{\sigma^2} - \sigma = \sqrt{V(X)} \rightarrow \sigma^2 - (\sigma)^2$$

Fortunately, we won't often use these formulas. Distributions will have

Bernoulli Distribution

The Bernoulli distribution is one of the simplest statistical distributions.

- The Bernoulli distribution is a random variable that can take only two
- Usually the events are labelled 0 and 1 Success
- The distribution is defined by a single parameter p ($0 \le p \le 1$), takes the values 0 and 1 with P(X = 0) = 1 - p and P(X = 1) = p
- The mean is

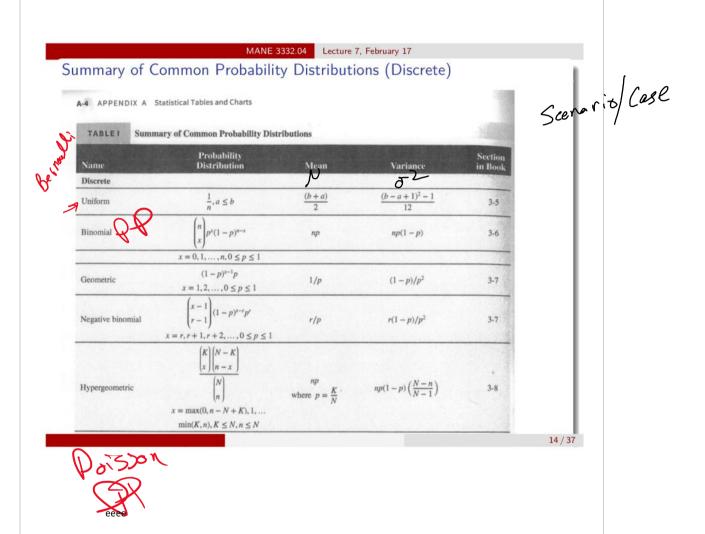
$$N = \sum_{i=0}^{1} \chi_i f(x_i) = 0 \cdot f(x_i) + 1 \cdot f(x_i)$$

$$\mu = E(X) = p$$

$$= 1 \cdot P = P$$

The standard deviation is

$$\sigma = \sqrt{p(1-p)}$$

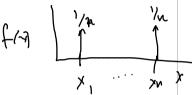


MANE 3332.04

Lecture 7, February 17

Discrete Uniform Distribution

- A random variable X is a discrete uniform rv if each of the n values in its range, x_1, x_2, \ldots, x_n has equal probability
- its range, x_1, x_2, \dots, x_n The PMF of a discrete uniform is defined to be



$$f(x_i) = \frac{1}{n}$$

 If the discrete uniform random variable is defined on the consecutive integers $a, a + 1, \dots, b$ for $a \le b$. The mean is

$$\mu = E(X) = \frac{b+a}{2}$$

and the standard deviation is

$$(b-a+1)^2-1$$

$$6^{2} = \frac{\left(b-a+1\right)^{2} \cdot 1}{12}$$

$$= \frac{h}{12} \left(x_{i} - h\right)^{2} \left(x_{i}\right)$$

Lecture 7, February 17

Problem 3.80

3-80. The lengths of plate glass parts are measured to the nearest tenth of a millimeter. The lengths are uniformly distributed with values at every tenth of a millimeter starting at 590.0 and continuing through 590.9. Determine the mean and variance of the lengths.

Figure 1: Problem 3.80 \nearrow E570.0, 78570.1, ..., 550.93

 $y = \frac{a+b}{2}$ where a f b are integers? NO, Can when $y = \frac{a+b}{2}$ Definition: $y = \sum x_i f(x_i)$

Binomial Distribution

- A very common and important distribution. See examples on pages 80
- A **binomial** experiment is an experiment consisting of *n* repeated trials such that
 - 1 the trials are independent
 - 2 each trial results in a Bernoulli outcome
 - 3 the probability of success on each trial, denoted as p, remains constant
- To be a binomial distribution, the sampling must be done with replacement. In some situations, the binomial distribution can be used when the sampling is done without replacement

Binomial Distribution

• The binomial PMF is

$$f(x) = \binom{n}{x} p^{x} (1-p)^{n-x}$$

where
$$\binom{n}{x} = \frac{n!}{x!(n-x)!}$$

• The mean of a binomial random variable is

$$\mu = E(X) = np$$

 \bullet The standard deviation of X is

$$\sigma = \sqrt{np(1-p)}$$

Example Problem

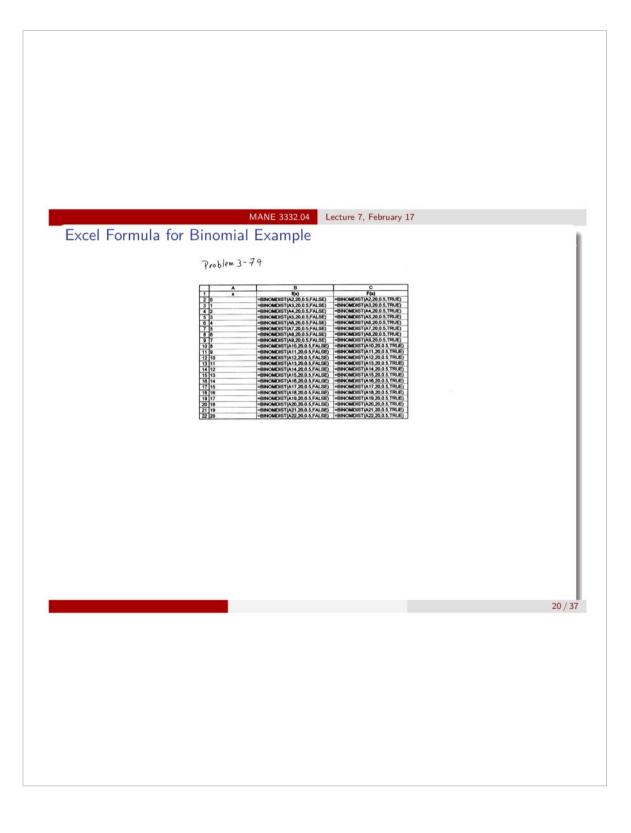
Source: Montgomery, Runger, Hubele (2004). Engineering Statistics.

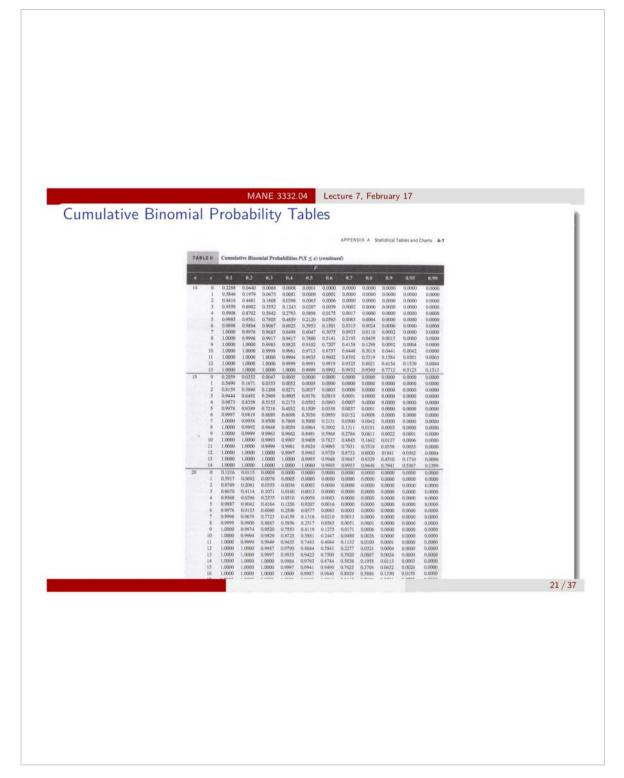
- (a) Sketch the probability mass function of X.
- (b) Sketch the cumulative distribution.
- (c) What value of X is most likely?
- (d) What value(s) of X is (are) least likely?
- 3-79. The random variable X has a binomial distribution with n = 20 and p = 0.5. Determine the following probabilities.
- (a) P(X = 15)

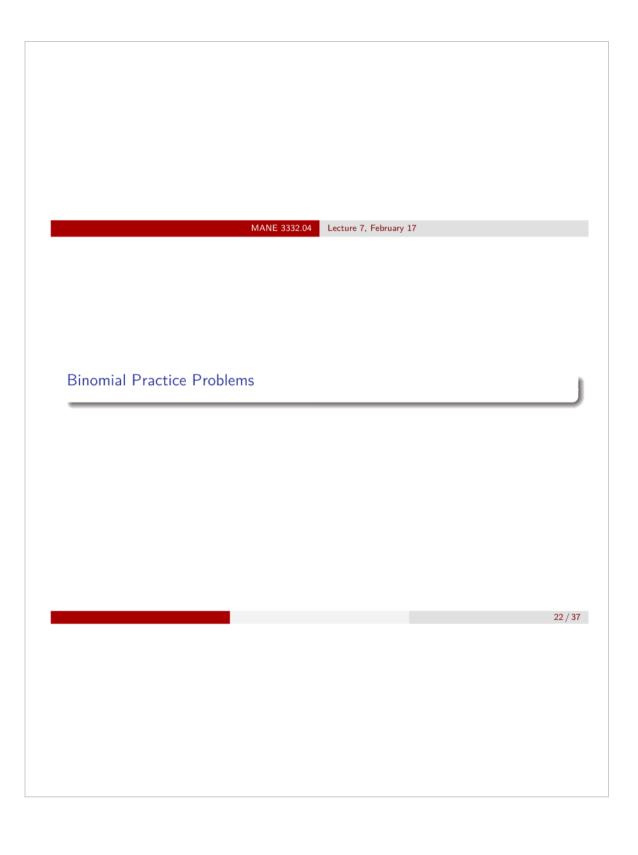
(b) $P(X \le 12)$

(c) $P(X \ge 19)$

- (d) $P(13 \le X < 15)$
- (e) Sketch the cumulative distribution function.







Hypergeometric Distribution

The hypergeometric distribution is one of the commonly occurring distributions in quality.

- ullet A random variable is hypergeometric when a set of N objects contains
 - K objects classified as successes and
 - ullet N-K objects classified as failures
 - ullet a sample of size n is selected **without replacement** from the N objects, where $K \leq N$ and $n \leq N$

MANE 3332.04

Lecture 7, February 17

Hypergeometric Distribution

• The hypergeometric PMF is

$$f(x) = \frac{\binom{K}{x} \binom{N - K}{n - x}}{\binom{N}{n}}$$

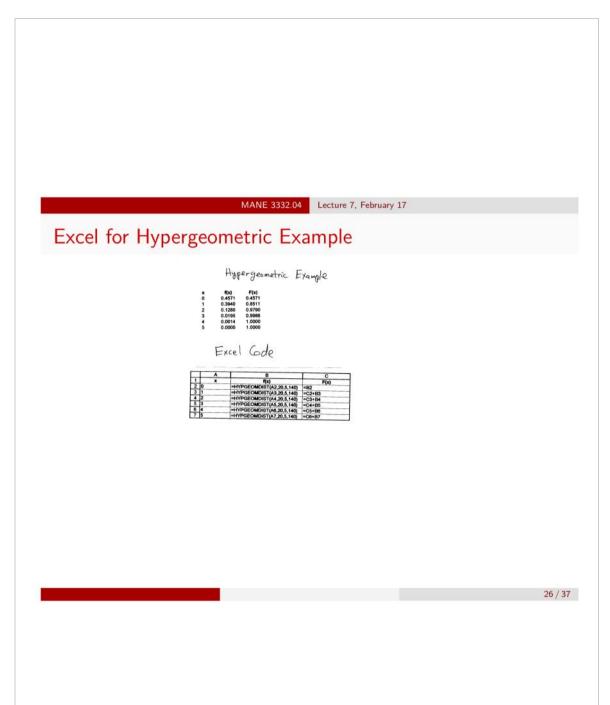
• The mean of X is

$$E(X) = \mu = np$$

 \bullet The variance of X is

$$\sigma^2 = V(X) = np(1-p) \left[\frac{N-n}{N-1} \right]$$

Hypergeometric Example Problem



Binomial Approximation to the Hypergeometric Distribution

• The mean and variance of the hypergeometric and binomial distribution are very similar. The variance only differs by the finite population correction factor,

$$\frac{N-n}{N-1}$$

- Sampling with replacement is equivalent to sampling from an infinite set (without replacement) because the proportion remains constant
- If n is small relative to N, then the finite correction is negligible and the binomial distribution can be used as an approximation to the hypergeometric.
- A rule of thumb is to use this approximation when N/n > 20.

Geometric Distribution

- Montgomery and Runger (2003) define a geometric random variable to be the number of trials until the first success of a series of independent Bernoulli trials, with constant probability p of success
- The PMF of a geometric distribution is

$$f(x) = (1-p)^{x-1}p, \ x = 1, 2, \dots$$

• The mean of a geometric random variable is

$$\mu = E(X) = \frac{1}{p}$$

• The variance of a geometric random variable is

$$\sigma^2 = V(X) = \frac{1-p}{2}$$

Geometric Distribution Example

Geometric Distribution Example

3-72. Suppose the random variable X has a geometric distribution with a mean of 2.5. Determine the following

probabilities: (a) P(X = 1) (b) P(X = 4)(c) P(X = 5) (d) $P(X \le 3)$ (e) P(X > 3)

Source: Montgomery 4 Runger (2003). Applied Statistics & Probability for Engineers

Note
$$\mu = \frac{1}{7} = 2.5 = 7 P = \frac{1}{2.5} = 0.4$$

$$P(x=2) = (1-1)^{3-1}.4 = 0.24$$

 $P(x=3) = (1-1)^{3-1}.4 = 0.144$
 $P(x \le 3) = .4 + .24 + .144 = .784$

Partel
$$P(x>3) = 1 - (P(x=1) + P(x=2))$$

= 1 - (.4 +.24)
= .36

Negative Binomial Distribution

- Montgomery and Runger (2003) define a negative binomial random variable to be the number of trials until r successes are observed of a series of independent Bernoulli trials, with constant probability p of success
- The geometric distribution is a special case of the negative binomial distribution with r = 1
- The PMF of a negative binomial distribution is

$$f(x) = {x-1 \choose r-1} (1-p)^{x-r} p^r, \ x = r, r+1, \dots$$

• The mean of a negative binomial random variable is

$$\mu = E(X) = \frac{r}{p}$$

Negative Binomial Example

Negative Binomial Distribution

Source: Madyoney & Runger (2003). Applied Statistics & Probability for Engineers.

put.)
$$r=3$$
, $p=0.001$

$$P = \frac{r}{p} = \frac{3}{.001} = 3,000$$
putb) $\sigma = \sqrt{\frac{r(1-y)}{p^2}} = \sqrt{\frac{3(1-001)}{.001^2}} = 1,731.18$

parts)
$$\sigma = \sqrt{\frac{r(1-\gamma)}{p^2}} = \sqrt{\frac{3(1-001)}{.001^2}} = 1,731.18$$

Poisson Process

- The number of events over an interval (such as time) is a discrete random variable that is often modelled by the Poisson distribution
- The length of the interval between events is often modeled by the (continuous) exponential distribution
- These two distributions are related

Poisson Process

- The number of events over an interval (such as time) is a discrete random variable that is often modelled by the Poisson distribution
- The length of the interval between events is often modelled by the (continuous) exponential distribution
- These two distributions are related

Poisson Process

Assume that the events occur at random throughout the interval. If the interval can be partitioned into subintervals of small enough length such that

- 1 The probability of more than one count in a subinterval is zero
- ② The probability of one count in a subinterval is the same for all subintervals and proportional to the length of the subinterval, and
- The count in each subinterval is independent of other subintervals, the random experiment is called a *Poisson process*

Poisson Distribution

If the mean number of counts in the interval is $\lambda > 0$, the random variable X that equals the number of counts in the interval has a **Poisson distribution** with parameter λ

• The Poisson PMF is

$$f(x) = \frac{e^{-\lambda}\lambda^x}{x!}, \ x = 0, 1, 2, \dots$$

• The mean of a Poisson random variable is

$$E(X) = \mu = \lambda$$

• The variance of a Poisson random variable is

$$V(X) = \sigma^2 = \lambda$$

MANE 3332.04 Lecture 7, February 17

Poisson Example

erce: Mantgomery, Runger, Hubele (2004). Engineering Statistics

$$f(s) = \frac{e^{-3.2}3.5}{5!} = 0.114$$

$$f(0) = \frac{e^{-9.6}q.6^{\circ}}{6!} = e^{-9.6} = 0.0001$$

37 / 37

Random Variable

Monday, February 17, 2025 8:13 AM

Let X be the number of heads when 3 Girs are flipped X { { 0,1,2,3} How mary events in Sample Space?]= 8 Sample Space 7 (HHH) Sample Space X Tabular Distribution × 0 1 2 3 FG) 1/8 3/8 3/8 1/2 Grophical-3/8

Monday, February 17, 2025 8:24 AM

$$\chi \rightarrow f(\chi)$$

$$f(x) = \begin{pmatrix} x \\ y \end{pmatrix} P^{x} \begin{pmatrix} 1 - p \end{pmatrix}^{n-x}$$

$$P = \begin{cases} probability \\ 0 \\ p \\ 0 \end{cases}$$

$$(3) = \begin{cases} 1 \\ 1 \\ 0 \\ 0 \end{cases}$$

QUESTION 1

Let X be a random variable with cumulative distribution function, F(x). Find P(X=5).

F(5) - F(4).

O 1-F(5)

O 1-F(4)

O F(4)

Screen clipping taken: 2/17/2025 8:46 AM

$$P(X=?) \rightarrow F(?) - F(??)$$

D(V 6?) or P(XZ?) -> F(?)

Monday, February 17, 2025 8:49 AM

QUESTION 3

Let X be a random variable with cumulative distribution function, F(x). Find P(X>6).

- O 1-F(5)
- O F(5)
- O F(6) F(5).
- O F(6)
- O 1-F(6).

Screen clipping taken: 2/17/2025 8:50 AM

When is + Ris + rue?

P(x76) XE(7,8...,n)

= 1- F(6)

Monday, February 17, 2025 8:51 AM

Let X be a random variable with cumulative distribution function, F(x). Find P(X <=37).

- ⊖ F(37) F(36).
- O F(36)
- O 1-F(37) O 1-F(36)

Screen clipping taken: 2/17/2025 8:52 AM

Recognize (DFis P/yex) P(X437) = F/37

Monday, February 17, 2025 8:52 AM

QUESTION 7

Let X be a random variable with cumulative distribution function, F(x). Find P(X>=12).

- O 1-F(12)
- O F(12) F(11)
- O F(12)
- 1-F(11).
- O F(11)

Screen clipping taken: 2/17/2025 8:53 AM

P(Y>/12)= 1-F(1)

Monday, February 17, 2025 8:54 AM

QUESTION 9

Let X be a random variable with cumulative distribution function, F(x). Find P(X<36).

O F(36) - F(35).

O 1-F(36)

F(35).F(36)

O 1-F(35)

Screen clipping taken: 2/17/2025 8:56 AM

P(XK36) = F(35) Set 30,...,353

B in
$$M = 20$$
, $P = .5$
4) $P(X = .5) = (20)(1 - .5)^{20-15}$

$$\binom{20}{15} = \binom{n}{r} = \binom{r}{r} = \binom{$$

b)
$$P(X \le 12) = f(0) + f(1) + \dots + f(12)$$

= $F(12) = .8684$

Wednesday, February 19, 2025 8:46 AM $P(X)/9 = \begin{cases} Pmf & f(15) + f(26) \\ F(18) & F(18) \end{cases}$

P(12> x>8) = F(12) - F(8)

Binomial pp

Wednesday, February 19, 2025 8:54 AM

QUESTION 1

N=4, P=0.99

Let X be a binomial random variable with with parameters: n=4 and p=0.99. Find P(X>3).

- 0.0394
- 1.0
- 0.0006

e correct answer is not provided.

- 0.9994

P(x3) = 1 - F(3)

= 1-.0394 ~ . %06

Screen clipping taken: 2/19/2025 8:56 AM

Binomial pp

Wednesday, February 19, 2025 9:00 AM

QUESTION 3

Let X be a binomial random variable with with parameters: n=10 and p=0.1. Find P(X<=6).

- 0.0001
- 0.0

O The correct answer is not provided.

p/x=6)=F/6)=1.00

- 0.377
- 0.9999
- 0.3823

Screen clipping taken: 2/19/2025 9:03 AM

bimomial

Wednesday, February 19, 2025

9:04 AM

QUESTION 5

X & 90,1,2,3}

Let X be a binomial random variable with with parameters: n=3 and n=0.5. Find n=0.5.

- 0.875
- O The correct answer is not provided.
- 0.384
- 1.0
- 0.125
- 0.0

P(X<0) > X & \{ - \infty = 0.0}

Screen clipping taken: 2/19/2025 9:05 AM

X cannot be

QUESTION 7

Let X be a binomial random variable with with parameters: n=10 and p=0.6. Find P(X>=2).

0.0106

The correct answer is not provided.

- 0.0017
- 0.9877
- 0.0123
- 0.6778

Screen clipping taken: 2/19/2025 9:08 AM

QUESTION 9

Let X be a binomial random variable with parameters: n=10 and p=0.99. Find P(X=3).

- 0.7361
- 0.3669
- 1.0

0.0

- O The correct answer is not provided.
- 0.623

=0.0 Attendance

P(x=3)=F/3\-F/2)

Screen clipping taken: 2/19/2025 9:10 AM