

Handouts

- Chapter 7 Slides
- Chapter 7 Slides marked

MANE 3332.04

Chapter Seven

Chapter 7 Overview

- Chapter 7 contains a detailed explanation of point estimates for parameters
- Much of this chapter is of a highly statistical nature and will not be covered in this course
- Key concepts we will discuss are:
 - Statistical inference
 - Statistic
 - Sampling distribution
 - Point estimator
 - Unbiased estimate
 - MVUE estimator
 - Central limit theorem

Statistical Inference

Montgomery gives the following description of statistical inference.
 The field of statistical inference consists of those methods used to
 make decisions or to draw conclusions about a population. These
 methods utilize the information contained in a sample from the
 population in drawing conclusions. This chapter begins our study
 of the statistical methods used for inference and decision making.

• Statistical inference may be divided into two major areas: parameter estimation and hypothesis testing

1) Point estimate L) Interval Estimate -

Point Estimate 75, y le run ber

- Montgomery states that "In practice, the engineer will use sample data to compute a number that is in some sense a reasonable value (or guess) of the true mean. This number is called a **point estimate**."
- Discuss examples
- A formal definition of a point estimate is A **point estimate** of some population parameter θ is a single numerical value $\hat{\theta}$ of a statistic $\hat{\Theta}$. The statistic $\hat{\Theta}$ is called the point estimate.
- Notice the use of the "hat" notation to denote a point estimate

$$\sqrt{3^{2}-5^{2}-\frac{N}{2}(x,-x)^{2}}$$

Statistic

- Point estimate requires a sample of random observations, say X_1, X_2, \dots, X_n
- Any function of the sampled random variables is called a statistic
- The function of the random variables is itself a random variable
- Thus, the sample mean \bar{x} and the sample variance s^2 are both statistics and random variables

Population Parameter: 1,02

Sample $x = \frac{1}{x}$ Stutistic: $x = \frac{1}{x}$

Properties of point estimators

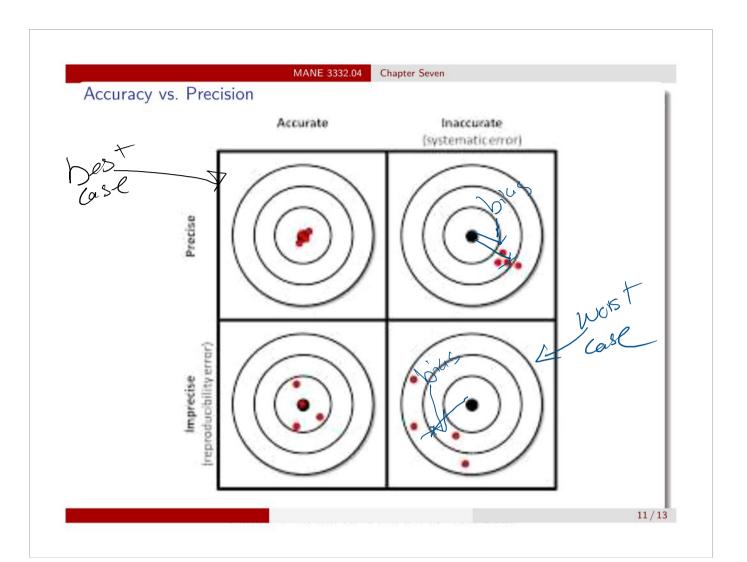
- We would like point estimates to be both accurate and precise
- An unbiased estimator addresses the accuracy criteria
- A minimum variance unbiased estimator addresses the precision criteria

Unbiased Estimator

ullet The point estimator $\hat{\Theta}$ is an **unbiased estimator** for the parameter θ if

$$E\left(\hat{\Theta}\right) = \theta$$

• If the point estimator is not unbiased, then the difference


$$E\left(\hat{\Theta}\right) - \theta$$

is called the bias of the estimator $\hat{\Theta}$

1) everything in this clock will use unbiosed estimator 2) Meem of we hell pistibution is biosed

MVUE

- Montgomery gives the following definition of a minimum variance unbiased estimator (MVUE) If we consider all unbiased estimators of θ , the one with the smallest variance is called the minimum variance unbiased estimator
- An import fact is that the sample mean \bar{x} is the MVUE for μ when the data comes from a normal distribution

Sampling Distribution

 The probability distribution of a statistic is called a sampling distribution

distribution
$$E(x) = E(x)$$

$$= \int_{-\infty}^{\infty} (x) = \int_{-\infty}^{\infty} E(x)$$

$$= \int_{-\infty}^{\infty} (x) = \int_{-\infty}$$

MANE 3332.04

Chapter Seven

Central Limit Theorem

• Definition of the Central Limit Theorem is If X_1, X_2, \ldots, X_n is a random sample of size n taken from a population (either finite or infinite) with mean μ and finite variance σ^2 , and if \overline{X} is the sample mean, the limiting form of the distribution of

 $Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$

as $n \to \infty$, is the standard normal distribution

- Important result because for sufficiently large n, the sampling distribution of \overline{X} is normally distribution
- This is a fundamental result that will be used extensively in the next four chapters of the textbook.

four chapters of the textbook.	ers of the textbook.	
	13 / 13	