

Lecture 19, April 7

- Topics:
 - Chapter 5: CLT
 - Chapter 6: Multivariate Statistical Analysis
 - Chapter 7: Definitions
 - Chapter 8: Interval Estimation
- Assignments:
 - Technical Report One due today
 - Linear Combination Practice Problems due today
 - Linear Combination Quiz (assigned 4/7/25, due 4/9/25)
- Attendance
- Return and discuss Test One
- Questions?

2/35

MANE 3332.04

Handouts

- Chapter 5
 - Chapter 5 Slides
 - Chapter 5 Slides marked
- Chapter 6
 - Chapter 6 Slides
 - Chapter 6 Slides marked
- Chapter 7
 - Chapter 7 slides
 - Chapter
- Chapter 8
 - Chapter 8 slides
 - Chapter 8 slides marked
- Final Exam Handouts

Class Schedule

Monday Lecture	Wednesday Lecture	
4/7: Chapter 7 & 8	4/9: Chapter 8, Case 1	
4/14: Chapter 8: Case 2	4/16: Chapter 8: Case 3	
4/21: Chapter 9, case 1	4/23: Chapter 9, Case 2	
4/28: Chpater 9, Case 3	4/30: Chapter 11	
5/5: Chapter 11	5/7: Review	

10 Sessions plus final exam

Final Exam: Tuesday May 13, 2025 10:15 am - 12:00 pm

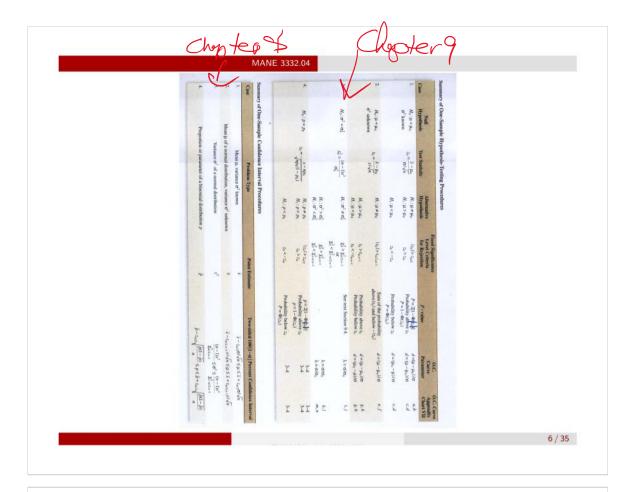
4/35

MANE 3332.04

Chapter 8 Introduction

- Intervals are another method of performing estimation
- A confidence interval is an interval estimate on a population parameter (primary focus of this chapter)
- Three types of interval estimates
 - A confidence intervals bounds population or distribution parameters
 - A tolerance interval bounds a selected proportion of a distribution-
 - A prediction interval bounds future observations from the population or distribution
- Interval estimates, especially confidence intervals are commonly used in

science and engineering

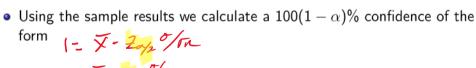


Confidence Interval on the Mean of a normal distribution, variance known (Case 1)

• Suppose that X_1, X_2, \ldots, X_n is a random sample from a normal

population with unknown mean μ and known variance σ^2 • A general expression for a confidence interval is

$$P[L \le \mu \le U] = 1 - \alpha$$



 $U = X + \frac{Z_{a/2}}{b}$ $I \leq \mu \leq u$

• A $100(1-\alpha)\%$ confidence interval for the mean of a normal distribution with variance known is

Atjandence 1-A

BUT It is Simplest from Statistical theory

Problem 8-12, part a (6th edition)

- 8-12. The life in hours of a 75-watt light bulb is known to be normally distributed with $\sigma=25$ hours. A random sample of 20 bulbs has a mean life of $\bar{x}=1014$ hours.
- (a) Construct a 95% two-sided confidence interval on the mean life.
- (b) Construct a 95% lower-confidence bound on the mean life.

Figure 2: image

8/35

MANE 3332.04

Interpreting Confidence Intervals

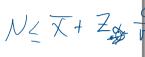
Montgomery gives the following statement regarding the correct interpretation of confidence intervals.

The correct interpretation lies in the realization that a CI is a random interval because in the probability statement defining the end-points of the interval, L and U are random variables. Consequently, the correct interpretation of a $100(1-\alpha)\%$ CI depends on the relative frequency view of probability. Specifically, if an infinite number of random samples are collected and a $100(1-\alpha)\%$ confidence interval for μ is computed from each sample, $100(1-\alpha)\%$ of these intervals will contain the true value of μ .

One-sided Confidence Bounds

It is possible to construct of-sided confidence bounds

• A $100(1-\alpha)\%$ upper-confidence bound for μ is



$$\mu \le u = \bar{x} + z_{\alpha} \frac{\sigma}{\sqrt{n}}$$

ullet A 100(1 -lpha)% lower-confidence bound for μ is

$$\bar{x} - z_{\alpha} \frac{\sigma}{\sqrt{n}} = l \le \mu$$
 $\chi - \chi_{\alpha} \frac{\sigma}{\sqrt{l}}$

10/35

MANE 3332.04

Sample Size Considerations

If \bar{x} is used as an estimate of μ , we can be $100(1-\alpha)\%$ confident that the error $|\bar{x} - \mu|$ will not exceed a specified amount E when the sample size is

$$n = \left(\frac{z_{\alpha/2}\sigma}{E}\right)^2 \quad \longrightarrow \quad \text{fourth } u$$

Problem 8-12, part b (6th edition)

- 8-12. The life in hours of a 75-watt light bulb is known to be normally distributed with $\sigma = 25$ hours. A random sample of 20 bulbs has a mean life of $\bar{x} = 1014$ hours.
- (a) Construct a 95% two-sided confidence interval on the mean life.
- (b) Construct a 95% lower-confidence bound on the mean life.

Figure 3: image $\sqrt{-2} \propto \sqrt[5]{N} \leq N$

1014-7.05 25 EN 1014-1.645 25 EN 1004.80 EN

12/35

100 (1-0) & = 958 (1-0) = 95 0 = .05

MANE 3332.04

A Large Sample CI for μ

25-30

- When n is large (say greater than or equal to 40), the central limit theorem can be used
- It states that $\frac{\bar{x}-\mu}{\sigma/\sqrt{n}}$ is approximately a standard normal random variable.
- Thus, we can replace the quantity σ/\sqrt{n} with S/\sqrt{n} and still use the quantiles of the normal distribution to construct a confidence interval.

$$\bar{x} - z_{\alpha/2} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + z_{\alpha/2} \frac{s}{\sqrt{n}}$$

• What assumption did we relax and why? Large Sample ensures

Chapter 8, Case 1 Practice Problems

14/35

MANE 3332.04

Confidence Interval for the mean of Normal distribution In Practice, most with variance unknown (Case 2)

The t distribution

Definition.

Let X_1, X_2, \ldots, X_n be a random sample from a normal distribution with unknown mean μ and unknown variance σ^2 . The random variable

$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}}$$

has a t distribution with n-1 degrees of freedom.

- A table of percentage points (quantiles) is given in Appendix A Table 5
- Figure 8-4 on page 180 shows the relationship between the t and normal distributions.
- Figure 8-5 explains the percentage points of the t distribution

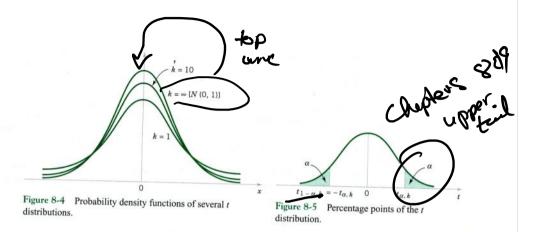


Figure 4: image

16/35

Core I MANE 3332.04 X-Zus Fr SP(X+Zus Fr

Confidence interval definition

• Using the t distribution it is possible to construct CIs If \bar{x} and s are the mean and standard deviation of a random sample from a normal distribution with unknown variance σ^2 , a $100(1-\alpha)\%$ confidence interval on μ is given by

$$\bar{x} - t_{\alpha/2, n-1} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + t_{\alpha/2, n-1} \frac{s}{\sqrt{n}}$$

where $t_{\alpha/2,n-1}$ is the upper $100(\alpha/2)$ percentage point of the t distribution with n-1 degrees of freedom.

99% c.j. MANE 3332.04

Problem 8-30 (6th edition)

(February 1988, p. 33) describes several characteristics of fuel rods used in a reactor owned by an electric utility in Norway.

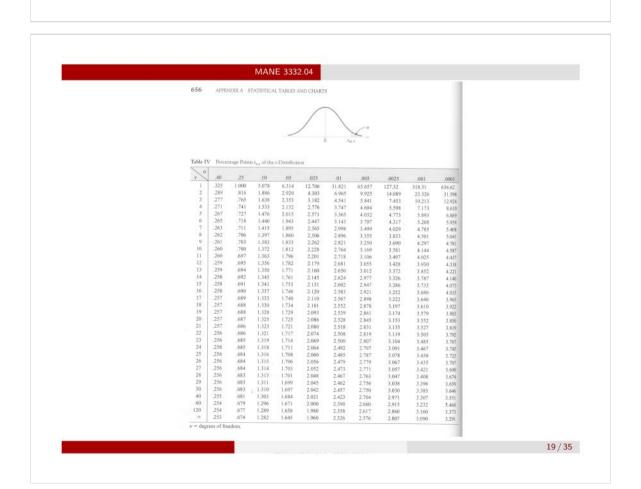
Measurements on the percentage of enrichment of 12 minutes. 18-30. An article in Nuclear Engineering International Measurements on the percentage of enrichment of 12 rods were reported as follows:

(a) Use a normal probability plot to check the normality as-

ds used in a reactor owned by an electric utility in Norway. easurements on the percentage of enrichment of 12 rods are reported as follows:

2.94 3.00 2.90 2.75 3.00 2.95
2.90 2.75 2.95 2.82 2.81 3.05 2.8183 - 3.06 =(b) Find

Figure 5: image



One-sided confidence bounds

- Are easy to construct
- Use only the appropriate upper or lower bound
- ullet Change $t_{lpha/2,n-1}$ to $t_{lpha,n-1}$

15/24

x-ta, ny vn </

upper bond VE VE U

NS X+ ta, no (on)

20 / 35

MANE 3332.04

Chapter 8, Case 2 Practice Problems

Confidence Interval for σ^2 and σ (Case 3)

- Section 8-3 presents a CI for σ^2 or σ
- Requires the χ^2 (chi-squared) distribution

Let X_1, X_2, \dots, X_n be a random sample from a normal distribution with mean μ and variance σ^2 and let S^2 be the sample variance. Then the 7-chl random variable

$$\chi^2 = \frac{(n-1)S^2}{\sigma^2}$$

has a chi-square (χ^2) distribution with n-1 degrees of freedom

- A table of the upper percentage points of the χ² distribution are given in Table 4 in the appendix
 Figure 8-9 on page 183 explains the percentage points of the χ² distribution
- distribution

22 / 35

MANE 3332.04

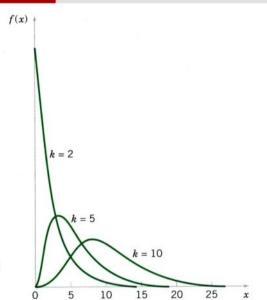


Figure 8-8 Probability density functions of several χ^2 distributions.

Figure 7: image

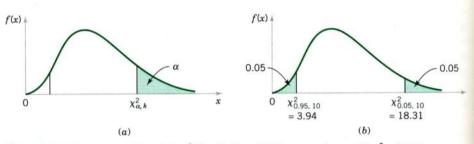


Figure 8-9 Percentage point of the χ^2 distribution. (a) The percentage point $\chi^2_{\alpha,k}$. (b) The upper percentage point $\chi^2_{0.05,10} = 18.31$ and the lower percentage point $\chi^2_{0.95,10} = 3.94$.

Figure 8: image

24/35

MANE 3332.04

Confidence Intervals for σ^2 and σ

If s^2 is the sample variance from a random sample of n observations from a normal distribution with unknown variance σ^2 , then a $100(1-\alpha)\%$ confidence interval on σ^2 is

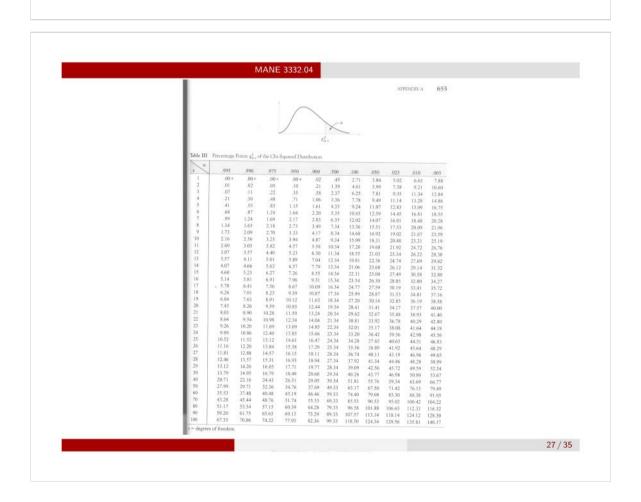
$$\frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}}$$

where $\chi^2_{\alpha/2,n-1}$ and $\chi^2_{1-\alpha/2,n-1}$ are the upper and lower $100\alpha/2$ percentage points of the χ^2 -distribution with n-1 degrees of freedom

Problem 8-36 (6th edition)

 $\sqrt{8-36}$. The sugar content of the syrup in canned peachs normally distributed. A random sample of n=10 cans yield a sample standard deviation of s=4.8 milligrams. Find 95% two-sided confidence interval for σ .

Figure 9: image



One-sided confidence bounds

- Are easy to construct
- Use only the appropriate upper or lower bound Change $\chi^2_{\alpha/2,n-1}$ to $\chi^2_{\alpha,n-1}$ or $\chi^2_{1-\alpha/2,n-1}$ to $\chi^2_{1-\alpha,n-1}$ See eqn (8-20) on page 184

28 / 35

MANE 3332.04

Chapter 8, Case 3 Practice Problems

Large-Sample CI for a Population Proportion (Case 4)

- Recall from chapter 4, that the sampling distribution of \widehat{P} is approximately normal with mean p and variance p(1-p)/p, if n is not too close to either 0 or 1 and if n is relatively large.
- Typically, we require both $np \ge 5$ and $n(1-p) \ge 5$

f n is large, the distribution of

$$Z = \frac{X - np}{\sqrt{np(1 - p)}} = \frac{\widehat{P} - p}{\sqrt{\frac{p(1 - p)}{n}}}$$

is approximately standard normal.

30 / 35

MANE 3332.04

If \hat{p} is the proportion of observations in a random sample of size n that belongs to a class of interest, an approximate $100(1-\alpha)\%$ confidence interval on the proportion p of the population that belongs to this class is

$$\hat{p}-z_{\alpha/2}\sqrt{rac{\hat{p}(1-\hat{p})}{n}}\leq p\leq \hat{p}+z_{\alpha/2}\sqrt{rac{\hat{p}(1-\hat{p})}{n}}$$

where $z_{\alpha/2}$ is the upper $\alpha/2$ percentage point of the standard normal distribution

Other Considerations

• We can select a sample so that we are $100(1-\alpha)\%$ confident that error $E=|p-\widehat{P}|$ using

$$n = \left(\frac{z_{\alpha/2}}{E}\right)^2 p(1-p)$$

• An upper bound on is given by

$$n = \left(\frac{z_{\alpha/2}}{E}\right)^2 (0.25)$$

• One-sided confidence bounds are given in eqn (8-26) on page 187

32 / 35

MANE 3332.04

Guidelines for Constructing Confidence Intervals

• Review excellent guide given in Table 8-1

Other Interval Estimates

- When we want to predict the value of a single value in the future, a prediction interval is used
- A tolerance interval captures $100(1-\alpha)\%$ of observations from a distribution

Prediction Interval for a Normal Distribution

- Excellent discussion on pages 189 190
- A $100(1-\alpha)\%$ PI on a single future observation from a normal distribution is given by

$$ar{x}-t_{lpha/2,n-1}s\sqrt{1+rac{1}{n}}\leq X_{n+1}\leq ar{x}+t_{lpha/2,n-1}s\sqrt{1+rac{1}{n}}$$

34 / 35

MANE 3332.04

Tolerance Intervals for a Normal Distribution

• A tolerance interval to contain at least $\gamma\%$ of the values in a normal population with confidence level $100(1-\alpha)\%$ is

$$\bar{x} - ks, \bar{x} + ks$$

where k is a tolerance interval factor for the normal distribution found in appendix A Table XII. Values are given for $1-\alpha=0.9$, 0.95 and 0.99 confidence levels and for $\gamma=.90, .95,$ and .99% probability of coverage

 One-sided tolerance bounds can also be computed. The factors are also in Table XII

Wednesday, April 9, 2025 8:09 AM

find 95% (.i. Chapter 8, Case)

Given N=20,0=25, X=1014

7-20/2 /M < NSX+Z0/10

 $100(1-\alpha) = 957$ $(1-\alpha) = .95$ $\alpha = .05$

Normal Distribution (2) Z.025 = 1.96 Z =025

Method 1 Std. Normal table (notre comended)

Method 2 - Me Morise

Method 3 - Me Morise

100/1-2/2= 708

	$1-\alpha = .9$
QUESTION 3	$X = 1 \rightarrow x/2 = .05$
Consider a sample of size 2	7 from a normal distribution with mean 0.5 and sigma 0.07. What is the value of a two-sided 90.0 % confidence interval for the mean?
O (0.5,0.5)	
O(0.5,0.5)	
(0.496,0.504)	Z.0025 = 1.645 .X-Z0/2 Jr < N< X+Z0/2/m
O (0.478,0.522)	
O (0.483,0.517)	T-701 - < P< X+Zx/2/Th
(0.498,0.502)	· / 201/2 JA
creen clipping taken: 4/9/2025 8:3	02/
	.48188 < NS .52216

100(1-0/8-98.98 (1-a) =,999 < ≥ .00/

QUESTION 4

Censider a sample of size 42 from a normal distribution with mean 0.5 and sigma 0.05. What is the value of a 99.9 % upper-confidence bound for the mean?

- O mu <=0.524
- O mu <=0.504
- O mu<=0.5
- O mu <=0.525
- O mu<=0.5
- O mu<=0.501

Screen clipping taken: 4/9/2025 8:40 AM

 $N \leq X + Z_{0} = 0.05$ $N \leq .5 + Z_{000} = 0.05$ $N \leq .5 + 3.09 = 0.05$ $N \leq .5 + 3.09 = 0.05$ $N \leq .5 + 3.84$

2.001=3.09

1000-25% = 99.5%

		l l	
QUESTION 5		99.5%	(1-a) = .995
Onsider a sample of size 36 from a mu >=11.651 mu >=10.851 mu>=11.526	normal distribution with mean 11.8 and sigma 1.73. What is the value of	or a 392 m lower-confidence bound for the mean.	X Z .003
○ mu >=10.909 ○ mu>=10.259 ○ mu>=11.543	X-Z2000	7 2570	0
Screen clipping taken: 4/9/2025 8:45 AM	11.8 2.605 V36 -/	Z-005-2.570	
	$11.8 - 2.576 \frac{1.73}{\sqrt{36}} \le N$	often	Som P
	11.0572N	W) '	1-C

Chapter 8, case 2 pp Monday, April 14, 2025 8:18 AM	77.5%	Conf. bo. 0
QUESTION 1 Consider a sample of size 27 from a normal distr	ibution with mean 12.0 and s 2.59. What is the value of a 97.5 % upper-confidence	bound for the mean?
○ mu <=12.197 ○ mu<=14.654 ○ mu<= 12.591	NE X+L, n-1 Sn	bound for the mean?
○ mu <=13.025 ○ mu <=12.511 ○ mu <=13.186	12+2.056 (2.59)	a = .025
Screen clipping taken: 4/14/2025 8:18 AM		need t.025,27-1-2.05
$\mathcal{N} \leq$	13.0248	

~>99.7% Got. boul

Screen clipping taken: 4/14/2025 8:25 AM

Consider a sample of size 28 from a normal distribution with mean 30.7 and s 3.46. What is the value of a 99.5 % lower-confidence bound for the mean?

Onu >= 30.358

- O mu >=30.358
- O mu >=28.701
- O mu>=29.393
- O mu>=24.432
- O mu>=29.515

O mu >=28.888

X-twin-1(5) < N

30.7-2.771 (3.46) < N

28.881 < N

(1-4) = . 995

Q = 008-

need t.005,28-1=2.77/

Chapter 8 Page 25

Chapter 8, case 2

Monday, April 14, 2025 8:29 AM

OUESTION 3

 $\begin{array}{c} (11.195,13.405) \\ (11.033,13.567) \\ (10.033,13.567) \\ (10.033,13.567) \\ (10.033,13.567) \\ (10.0329 \leq N \leq 13.3 + 2.48) \\ (10.0329 \leq N \leq 13.48) \\ (10.0329 \leq$