

Lecture 19, April 7

- Topics:
 - Chapter 5: CLT
 - Chapter 6: Multivariate Statistical Analysis
 - Chapter 7: Definitions
 - Chapter 8: Interval Estimation
- Assignments:
 - Technical Report One due today
 - Linear Combination Practice Problems due today
 - Linear Combination Quiz (assigned 4/7/25, due 4/9/25)
- Attendance
- Return and discuss Test One
- Questions?

Handouts

- Chapter 5
 - Chapter 5 Slides
 - Chapter 5 Slides marked
- Chapter 6
 - Chapter 6 Slides
 - Chapter 6 Slides marked
- Chapter 7
 - Chapter 7 slides
 - Chapter
- Chapter 8
 - Chapter 8 slides
 - Chapter 8 slides marked
- Final Exam Handouts

Class Schedule

Monday Lecture	Wednesday Lecture					
4/7: Chapter 7 & 8	4/9: Chapter 8, Case 1					
4/14: Chapter 8: Case 2	4/16: Chapter 8: Case 3					
4/21: Chapter 9, case 1	4/23: Chapter 9, Case 2					
4/28: Chpater 9, Case 3	4/30: Chapter 11					
5/5: Chapter 11	5/7: Review					

10 Sessions plus final exam

Final Exam: Tuesday May 13, 2025 10:15 am - 12:00 pm

Chapter 8 Introduction

- Intervals are another method of performing estimation
- A confidence interval is an interval estimate on a population parameter (primary focus of this chapter)
- Three types of interval estimates
 - A confidence intervals bounds population or distribution parameters
 - A tolerance interval bounds a selected proportion of a distribution
 - A prediction interval bounds future observations from the population or distribution
- Interval estimates, especially confidence intervals are commonly used in science and engineering

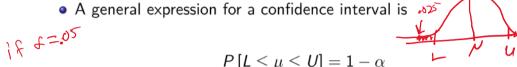
2 probbilities

Tolerance; ± want a 958 tolerance internal that contains 80% of heppelotin

| Summary of One-Sample Hypothesis-Testing Procedures | Part Significance | Part Signi

Confidence Interval on the Mean of a normal distribution, variance known (Case 1) 7 in practice, not

- Suppose that X_1, X_2, \dots, X_n is a random sample from a normal population with unknown mean μ and known variance σ^2
- A general expression for a confidence interval is



• Using the sample results we calculate a $100(1-\alpha)\%$ confidence of the form 1- X- Za/20/50

$$U = X + Zu/2$$
 for $1 \le \mu \le u$

• A $100(1-\alpha)\%$ confidence interval for the mean of a normal distribution with variance known is

Attendance 1-A

Problem 8-12,part a (6th edition)

- 8-12. The life in hours of a 75-watt light bulb is known to be normally distributed with $\sigma=25$ hours. A random sample of 20 bulbs has a mean life of $\bar{x}=1014$ hours.
- (a) Construct a 95% two-sided confidence interval on the mean life.
- (b) Construct a 95% lower-confidence bound on the mean life.

Figure 2: image

Interpreting Confidence Intervals

Montgomery gives the following statement regarding the correct interpretation of confidence intervals.

The correct interpretation lies in the realization that a CI is a random interval because in the probability statement defining the end-points of the interval, L and U are random variables. Consequently, the correct interpretation of a $100(1-\alpha)\%$ CI depends on the relative frequency view of probability. Specifically, if an infinite number of random samples are collected and a $100(1-\alpha)\%$ confidence interval for μ is computed from each sample, $100(1-\alpha)\%$ of these intervals will contain the true value of μ .

One-sided Confidence Bounds

It is possible to construct on-sided confidence bounds

ullet A 100(1 -lpha)% upper-confidence bound for μ is

$$\mu \le u = \bar{x} + z_{\alpha} \frac{\sigma}{\sqrt{n}}$$

ullet A 100(1 - lpha)% lower-confidence bound for μ is

$$\bar{x} - z_{\alpha} \frac{\sigma}{\sqrt{n}} = I \le \mu$$

Sample Size Considerations

If \bar{x} is used as an estimate of μ , we can be $100(1-\alpha)\%$ confident that the error $|\bar{x}-\mu|$ will not exceed a specified amount E when the sample size is

$$n = \left(\frac{z_{\alpha/2}\sigma}{E}\right)^2$$

Problem 8–12, part b (6th edition)

- 8-12. The life in hours of a 75-watt light bulb is known to be normally distributed with $\sigma=25$ hours. A random sample of 20 bulbs has a mean life of $\bar{x}=1014$ hours.
- (a) Construct a 95% two-sided confidence interval on the mean life.
- (b) Construct a 95% lower-confidence bound on the mean life.

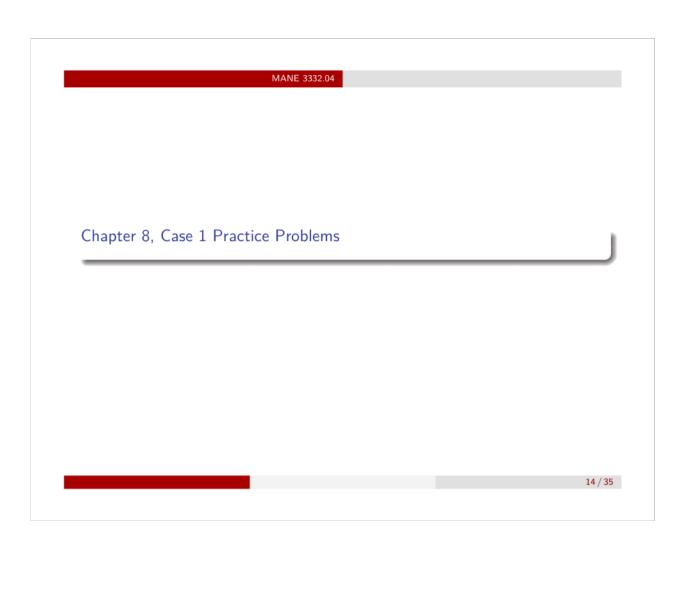
Figure 3: image

A Large Sample CI for μ

- When n is large (say greater than or equal to 40), the central limit theorem can be used
- It states that $\frac{\bar{x}-\mu}{\sigma/\sqrt{n}}$ is approximately a standard normal random variable.
- Thus, we can replace the quantity σ/\sqrt{n} with S/\sqrt{n} and still use the quantiles of the normal distribution to construct a confidence interval.

$$\bar{x} - z_{\alpha/2} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + z_{\alpha/2} \frac{s}{\sqrt{n}}$$

• What assumption did we relax and why?



Confidence Interval for the mean of Normal distribution with variance unknown (Case 2)

The t distribution

Definition.

Let X_1, X_2, \ldots, X_n be a random sample from a normal distribution with unknown mean μ and unknown variance σ^2 . The random variable

$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}}$$

has a t distribution with n-1 degrees of freedom.

- A table of percentage points (quantiles) is given in Appendix A Table 5
- Figure 8-4 on page 180 shows the relationship between the *t* and normal distributions.
- Figure 8-5 explains the percentage points of the t distribution

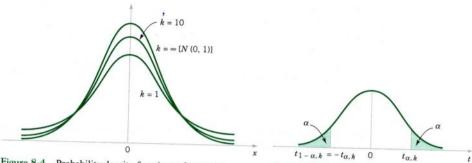


Figure 8-4 Probability density functions of several t distributions.

Figure 8-5 Percentage points of the *t* distribution.

Figure 4: image

Confidence interval definition

• Using the t distribution it is possible to construct CIs If \bar{x} and s are the mean and standard deviation of a random sample from a normal distribution with unknown variance σ^2 , a $100(1-\alpha)\%$ confidence interval on μ is given by

$$\bar{x} - t_{\alpha/2, n-1} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + t_{\alpha/2, n-1} \frac{s}{\sqrt{n}}$$

where $t_{\alpha/2,n-1}$ is the upper $100(\alpha/2)$ percentage point of the t distribution with n-1 degrees of freedom.

Problem 8-30 (6th edition)

8-30. An article in *Nuclear Engineering International* (February 1988, p. 33) describes several characteristics of fuel rods used in a reactor owned by an electric utility in Norway. Measurements on the percentage of enrichment of 12 rods were reported as follows:

2.94	3.00	2.90	2.75	3.00	2.95
2.90	2.75	2.95	2.82	2.81	3.05

- (a) Use a normal probability plot to check the normality assumption.
- (b) Find a 99% two-sided confidence interval on the mean percentage of enrichment. Are you comfortable with the statement that the mean percentage of enrichment is 2.95 percent? Why?

Figure 5: image

656 APPENDIX A STATISTICAL TABLES AND CHARTS

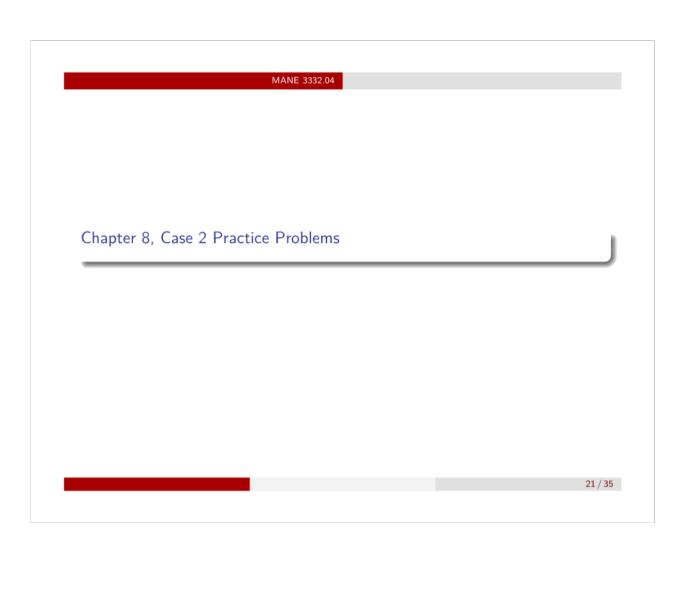
Table IV Percentage Points t_{n,r} of the t-Distribution

1 0	.40	.25	.10	.05	.025	.01	.005	.0025	.001	.0005
1	.325	1.000	3.078	6.314	12.706	31.821	63.657	127.32	318,31	636.62
2	.289	.816	1.886	2.920	4.303	6.965	9.925	14.089	23.326	31.59
3	.277	.765	1.638	2.353	3.182	4.541	5.841	7.453	10.213	12.92
4	.271	.741	1.533	2.132	2.776	3,747	4.604	5,598	7.173	8.610
5	.267	.727	1.476	2.015	2.571	3,365	4.032	4.773	5,893	6.86
6	.265	.718	1,440	1.943	2.447	3.143	3.707	4.317	5.208	5.95
7	.263	.711	1.415	1.895	2.365	2.998	3,499	4.029	4.785	5.40
8	262	.706	1.397	1.860	2.306	2.896	3.355	3.833	4.501	5.04
9	.261	.703	1.383	1.833	2.262	2.821	3.250	3.690	4.297	4.78
10	.260	.700	1.372	1.812	2.228	2.764	3.169	3.581	4.144	4.583
11	.260	.697	1.363	1.796	2.201	2.718	3.106	3.497	4.025	4.43
12	259	.695	1.356	1.782	2.179	2.681	3.055	3.428	3.930	4.31
13	.259	.694	1.350	1.771	2.160	2.650	3.012	3.372	3.852	4.22
14	.258	.692	1.345	1.761	2.145	2.624	2.977	3.326	3,787	4.14
15	.258	.691	1.341	1.753	2.131	2.602	2.947	3.286	3,733	4.07
16	.258	.690	1.337	1.746	2.120	2.583	2.921	3.252	3.686	4.01
17	.257	.689	1.333	1.740	2.110	2.567	2.898	3.222	3.646	3.96
18	.257	.688	1.330	1.734	2.101	2.552	2.878	3.197	3.610	3.922
19	.257	.688	1.328	1.729	2.093	2.539	2.861	3,174	3.579	3.88
20	.257	.687	1.325	1.725	2.086	2.528	2.845	3.153	3.552	3.85
21	.257	.686	1.323	1.721	2.080	2.518	2.831	3.135	3.527	3.819
22	.256	.686	1.321	1.717	2.074	2.508	2.819	3.119	3.505	3.792
23	.256	.685	1.319	1.714	2.069	2.500	2.807	3.104	3.485	3.76
24	.256	.685	1.318	1.711	2.064	2.492	2.797	3.091	3.467	3.74
25	.256	.684	1.316	1.708	2.060	2.485	2.787	3.078	3.450	3.72
26	.256	.684	1.315	1.706	2.056	2.479	2.779	3.067	3,435	3.707
27	256	.684	1.314	1.703	2.052	2,473	2.771	3.057	3.421	3.690
28	256	.683	1.313	1.701	2.048	2.467	2.763	3.047	3.408	3.67
29	.256	.683	1.311	1.699	2.045	2.462	2.756	3.038	3.396	3.65
30	.256	.683	1.310	1.697	2.042	2.457	2.750	3.030	3.385	3.646
40	.255	.681	1.303	1.684	2.021	2.423	2.704	2.971	3.307	3.551
60	.254	.679	1.296	1.671	2.000	2.390	2.660	2.915	3.232	3.460
120	.254	.677	1.289	1.658	1.980	2.358	2.617	2.860	3.160	3.373
00	.253	.674	1.282	1.645	1.960	2.326	2.576	2.807	3.090	3.291

 $\nu =$ degrees of freedom.

One-sided confidence bounds

- Are easy to construct
- Use only the appropriate upper or lower bound
- ullet Change $t_{lpha/2,n-1}$ to $t_{lpha,n-1}$



Confidence Interval for σ^2 and σ (Case 3)

- \bullet Section 8-3 presents a CI for σ^2 or σ
- Requires the χ^2 (chi-squared) distribution

Let X_1, X_2, \ldots, X_n be a random sample from a normal distribution with mean μ and variance σ^2 and let S^2 be the sample variance. Then the random variable

$$\chi^2 = \frac{(n-1)S^2}{\sigma^2}$$

has a chi-square (χ^2) distribution with n-1 degrees of freedom

- \bullet A table of the upper percentage points of the χ^2 distribution are given in Table 4 in the appendix
- \bullet Figure 8-9 on page 183 explains the percentage points of the χ^2 distribution

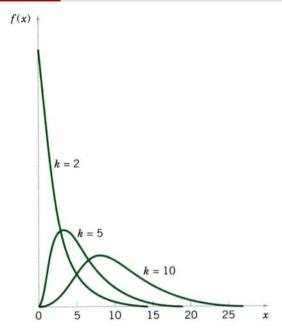


Figure 8-8 Probability density functions of several χ^2 distributions.

Figure 7: image

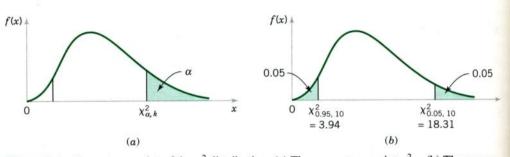


Figure 8-9 Percentage point of the χ^2 distribution. (a) The percentage point $\chi^2_{0.05,10} = 18.31$ and the lower percentage point $\chi^2_{0.95,10} = 3.94$.

Figure 8: image

Confidence Intervals for σ^2 and σ

If s^2 is the sample variance from a random sample of n observations from a normal distribution with unknown variance σ^2 , then a $100(1-\alpha)\%$ confidence interval on σ^2 is

$$\frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}}$$

where $\chi^2_{\alpha/2,n-1}$ and $\chi^2_{1-\alpha/2,n-1}$ are the upper and lower $100\alpha/2$ percentage points of the χ^2 -distribution with n-1 degrees of freedom

Problem 8-36 (6th edition)

 $\sqrt{8-36}$. The sugar content of the syrup in canned peaches normally distributed. A random sample of n=10 cans yield a sample standard deviation of s=4.8 milligrams. Find 95% two-sided confidence interval for σ .

Figure 9: image

APPENDIX A 655

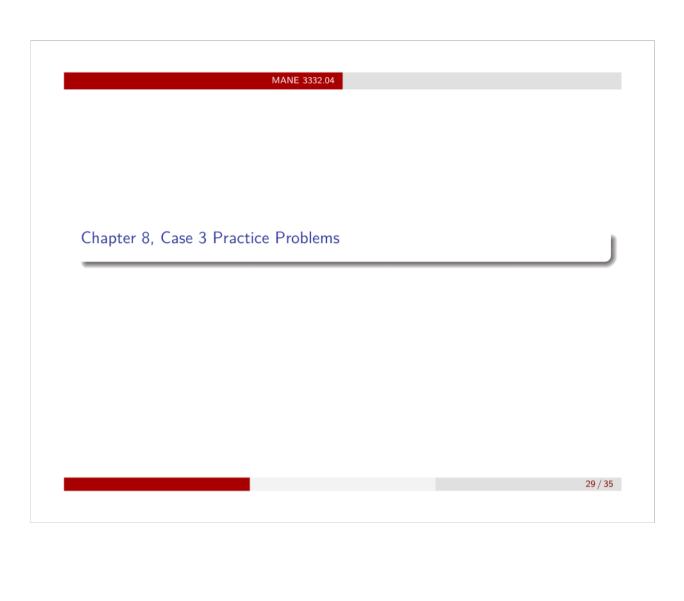
Table III Percentage Points $\chi^2_{n,r}$ of the Chi-Squared Distribution

1/0	.995	.990	.975	.950	.900	.500	.100	.050	.025	.010	.005
1	+00.	.00+	+00.	.00+	.02	.45	2.71	3.84	5.02	6.63	7,8
2	.01	.02	.05	.10	.21	1.39	4.61	5.99	7.38	9.21	10.6
3	.07	.11	.22	35	.58	2.37	6.25	7.81	9.35	11.34	12.8
4	.21	.30	.48	.71	1.06	3.36	7.78	9.49	11.14	13.28	14.8
5	.41	.55	.83	1.15	1.61	4.35	9.24	11.07	12.83	15.09	16.7
.6	.68	.87	1.24	1.64	2.20	5.35	10.65	12.59	14.45	16.81	18.5
7	.00	1.24	1.69	2.17	2.83	6.35	12.02	14.07	16.01	18.48	20.2
8	1.34	1.65	2.18	2.73	3.49	7.34	13.36	15.51	17.53	20.09	21.9
9	1.73	2.09	2.70	3.33	4.17	8.34	14.68	16.92	19.02	21.67	23.5
10	2.16	2.56	3.25	3.94	4.87	9.34	15.99	18.31	20.48	23.21	25.1
11	2.60	3.05	3.82	4.57	5.58	10.34	17.28	19.68	21.92	24.72	26.7
12	3.07	3.57	4.40	5.23	6,30	11.34	18.55	21.03	23.34	26.22	28.3
13	3.57	4.11	5.01	5.89	7.04	12.34	19.81	22.36	24.74	27.69	29.8
14	4.07	4.66	5.63	6.57	7.79	13.34	21.06	23.68	26.12	29.14	
15	4.60	5.23	6.27	7.26	8.55	14.34	22.31	25.00	27.49	30.58	31.3
16	5.14	5.81	6.91	7.96	931	15.34	23.54	26.30	28.85	32.00	32.8
17	- 5.70	6.41	7.56	8.67	10.09	16.34	24.77	27.59	30.19		34.2
18	6.26	7.01	8.23	9.39	10.87	17,34	25.99	28.87	31.53	33.41	35.7
19	6.84	7.63	8.91	10.12	11.65	18.34	27.20	30.14	32.85	34.81	37.16
20	7.43	8.26	9.59	10.85	12.44	19.34	28.41	31.41		36.19	38.58
21	8.03	8.90	10.28	11.59	13.24	20.34	29.62		34.17	37,57	40.00
22	8.64	9.54	10.98	12.34	14.04	21.34		32.67	35.48	38.93	41.40
23	9.26	10.20	11.69	13.09	14.85	22.34	30.81	33.92	36.78	40.29	42.80
24	9.89	10.86	12.40	13.85	15.66		32.01	35.17	38.08	41.64	44.18
25	10.52	11.52	13.12	14.61		23.34	33.20	36.42	39.36	42.98	45.50
26	11.16	12.20	13.12		16.47	24.34	34.28	37.65	40,65	44.31	46.93
27	11.81	12.28	14.57	15.38	17.29	25.34	35.56	38.89	41.92	45.64	48.29
28	12.46	13.57	15.31		18.11	26.34	36.74	40.11	43.19	46.96	49.65
29	13.12	14.26	16.05	16.93	18.94	27.34	37.92	41.34	44.46	48.28	50.99
30	13.79	14.95		17,71	19.77	28.34	39.09	42.56	45.72	49.59	52.34
40	20.71		16.79	18.49	20.60	29.34	40.26	43.77	46.98	50.89	53.67
50	27.99	22.16	24.43	26.51	29.05	39.34	51.81	55.76	59.34	63.69	66.77
		29.71	32.36	34.76	37.69	49.33	63.17	67.50	71.42	76.15	79.49
60 70	35.53	37.48	40.48	43.19	46.46	59.33	74.40	79.08	83.30	88.38	91.95
	43.28	45.44	48.76	51.74	55.33	69,33	85.53	90.53	95.02	100.42	104.22
80	51,17	53.54	57.15	60.39	64.28	79.33	96.58	101.88	106.63	112.33	116.32
90	59.20	61.75	65.65	69.13	73.29	89,33	107.57	113.14	118.14	124.12	128.30
100	67.33	70.06	74.22	77,93	82.36	99.33	118.50	124.34	129.56	135.81	140.17

= degrees of freedon

One-sided confidence bounds

- Are easy to construct
- Use only the appropriate upper or lower bound
- Change $\chi^2_{\alpha/2,n-1}$ to $\chi^2_{\alpha,n-1}$ or $\chi^2_{1-\alpha/2,n-1}$ to $\chi^2_{1-\alpha,n-1}$ See eqn (8-20) on page 184



Large-Sample CI for a Population Proportion (Case 4)

- Recall from chapter 4, that the sampling distribution of \widehat{P} is approximately normal with mean p and variance p(1-p)/p, if n is not too close to either 0 or 1 and if n is relatively large.
- Typically, we require both $np \ge 5$ and $n(1-p) \ge 5$

f n is large, the distribution of

$$Z = \frac{X - np}{\sqrt{np(1-p)}} = \frac{\widehat{P} - p}{\sqrt{\frac{p(1-p)}{n}}}$$

is approximately standard normal.

If \hat{p} is the proportion of observations in a random sample of size n that belongs to a class of interest, an approximate $100(1-\alpha)\%$ confidence interval on the proportion p of the population that belongs to this class is

$$\hat{
ho}-z_{lpha/2}\sqrt{rac{\hat{
ho}(1-\hat{
ho})}{n}}\leq
ho\leq \hat{
ho}+z_{lpha/2}\sqrt{rac{\hat{
ho}(1-\hat{
ho})}{n}}$$

where $z_{\alpha/2}$ is the upper $\alpha/2$ percentage point of the standard normal distribution

Other Considerations

• We can select a sample so that we are $100(1-\alpha)\%$ confident that error $E=|p-\widehat{P}|$ using

$$n = \left(\frac{z_{\alpha/2}}{E}\right)^2 p(1-p)$$

• An upper bound on is given by

$$n = \left(\frac{z_{\alpha/2}}{E}\right)^2 (0.25)$$

• One-sided confidence bounds are given in eqn (8-26) on page 187

Guidelines for Constructing Confidence Intervals

• Review excellent guide given in Table 8-1

Other Interval Estimates

- When we want to predict the value of a single value in the future, a prediction interval is used
- A tolerance interval captures $100(1-\alpha)\%$ of observations from a distribution

Prediction Interval for a Normal Distribution

- Excellent discussion on pages 189 190
- A $100(1-\alpha)\%$ PI on a single future observation from a normal distribution is given by

$$ar{x}-t_{lpha/2,n-1}s\sqrt{1+rac{1}{n}}\leq X_{n+1}\leq ar{x}+t_{lpha/2,n-1}s\sqrt{1+rac{1}{n}}$$

Tolerance Intervals for a Normal Distribution

• A **tolerance interval** to contain at least $\gamma\%$ of the values in a normal population with confidence level $100(1-\alpha)\%$ is

$$\bar{x} - ks, \bar{x} + ks$$

where k is a tolerance interval factor for the normal distribution found in appendix A Table XII. Values are given for $1-\alpha{=}0.9$, 0.95 and 0.99 confidence levels and for $\gamma=.90, .95,$ and .99% probability of coverage

 One-sided tolerance bounds can also be computed. The factors are also in Table XII