

MANE 3332.05

Lecture 21

Agenda

- Have worked through partial credit requests
- Continue Chapter 8 lecture
- Chapter 8, Case 1 Practice Problems (assigned 11/6/2025, due 11/11/2025)
- New: Chapter 8, Case 1 Quiz (assigned 11/11/2025, due 11/13/2025)
- New: Chapter 8, Case 2 Practice Problems (assigned 11/11/2025, due 11/13/2025)
- Attendance
- Questions?

Handouts

- Lecture 21 Slides
- Lecture 21 Slides marked

11	11/11 - Chapter 8 (part 2)	11/13 - Chapter 8 (part 3)
12	11/18 - Chapter 8 (part 4)	11/25 - Chapter 9 (part 1)
13	11/25 - Chapter 9 (part 2)	11/27 - Thanksgiving Holiday (no class)
14	12/2 - Chapter 9 (part 3)	12/4 - Linear Regression

Thursday Lecture

11/12 Chapter 0 /part 2)

12/11 - Study Day (no class)

Tuesday Lecture

11/11 Chantar 0 /nort 2)

12/9 - Review Session

Week

15

The final exam for MANE 3332.01 is Thursday December 18,

2025 at 10:15 AM - 12:00 PM.

Confidence Interval for the mean of Normal distribution with variance unknown (Case 2)

The t distribution

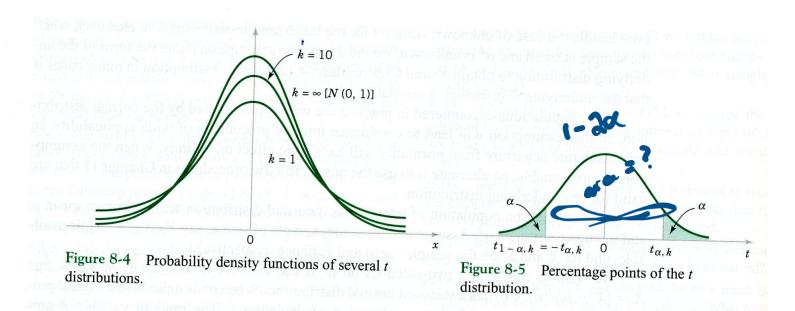
• Definition.

Let $X_1, X_2, ..., X_n$ be a random sample from a normal distribution with unknown mean μ and unknown variance σ^2 . The random variable

$$T = \frac{\overline{X} - \mu}{S / \sqrt{n}}$$

has a t distribution with n-1 degrees of freedom.

- A table of percentage points (quantiles) is given in Appendix A Table 5
- Figure 8-4 on page 180 shows the relationship between the t and normal distributions.
- Figure 8-5 explains the percentage points of the t distribution



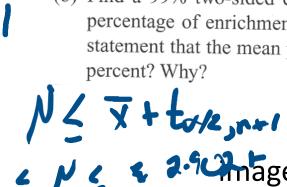
image

Confidence interval definition

• Using the t distribution it is possible to construct CIs If \bar{x} and s are the mean and standard deviation of a random sample from a normal distribution with unknown variance σ^2 , a $100(1-\alpha)\%$ confidence interval on μ is given by

$$\bar{x} - t_{\alpha/2, n-1} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + t_{\alpha/2, n-1} \frac{s}{\sqrt{n}}$$

where $t_{\alpha/2,n-1}$ is the upper $100(\alpha/2)$ percentage point of the t distribution with n-1 degrees of freedom.



- (February 1988, p. 33) describes several characteristics of fuel rods used in a reactor owned by an electric utility in Norway.

 Measurements on the percentage of enrichment of 12 rods were reported as follows: 2.94 3.00 2.90 2.75 3.00 2.95 2.90 2.75 2.95 2.82 2.81 3.05 (a) Use a normal probability plot to check the normality assumption. Find a 99% two-sided confidence interval on the mean percentage of enrichment. Are you comfortable with the statement that the mean percentage of enrichment is 2.95
- percent? Why?

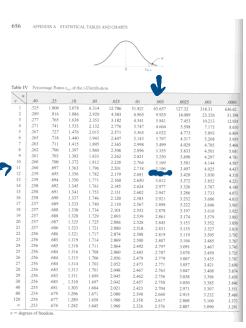
 (Str.)

 2.104

 2.104

 2.104

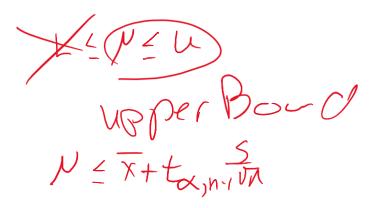
 2.104 2.81244 NY 2.99157



image

One-sided confidence bounds

- Are easy to construct
- Use only the appropriate upper or lower bound
- Change $t_{\alpha/2,n-1}$ to $t_{\alpha,n-1}$



Chapter 8, Case 2 Practice Problems

Question 2 (2 points)

Listen

Consider a sample of size 6 from a normal distribution with mean 18.4 and s 3.06.

What is the value of a two-sided 98.0 % confidence interval for the mean? X=1-.98=,02

- (16.684, 20.116)
- 4.196,22.604)
- (5.537,31.263)
- (14.956, 21.844)
- (13.149, 23.651)

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} (14.098,22.702) \\ \hline \begin{array}{c} \hline \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \begin{array}{c} (14.098,22.702) \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \begin{array}{c} X \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} X \\ \hline \end{array} \\ \begin{array}{c} -1 \\ \hline \end{array} \\ \begin{array}{c} (3.06) \\ \end{array} \\ \begin{array}{c} (3.06) \\ \hline \end{array} \\ \begin{array}{c} (3.06) \\$

E.02/2,6-1

t-01,5=3.365

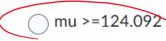
Question 4 (2 points) X = .025 Listen Consider a sample of size 16 from a normal distribution with mean 24.0 and s 7.13. What is the value of a 97.5 % upper-confidence bound for the mean? need t.025, 16-1 mu <=24.95 t.025,15 - 2.131 mu <=27.799 mu<=30.772 mu <=28.438 mu<=31.911 mu<=51.089 L 27.7985

Question 5 (2 points)

X - .

Consider a sample of size 26 from a normal distribution with mean 127.5 and s 13.2.

What is the value of a 90.0 % lower-confidence bound for the mean?



Need L.1,26-1-1.316

$$316\left(\frac{13.2}{v_{267}}\right) \leq 124.093 \leq N$$

Confidence Interval for σ^2 and σ (Case 3)

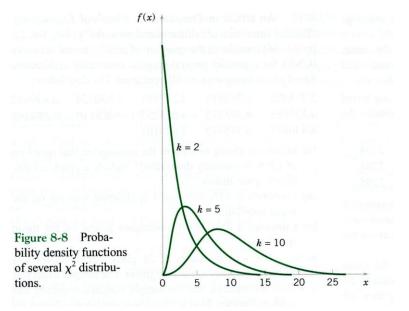
- Section 8-3 presents a CI for σ^2 or σ
- Requires the χ^2 (chi-squared) distribution

Let $X_1, X_2, ..., X_n$ be a random sample from a normal distribution with mean μ and variance σ^2 and let S^2 be the sample variance. Then the random variable

$$\chi^2 = \frac{(n-1)S^2}{\sigma^2}$$

has a chi-square (χ^2) distribution with n-1 degrees of freedom

- A table of the upper percentage points of the χ^2 distribution are given in Table 4 in the appendix
- Figure 8-9 on page 183 explains the percentage points of the χ^2 distribution



image

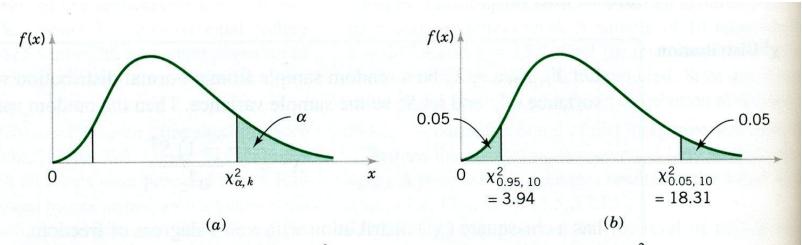


Figure 8-9 Percentage point of the χ^2 distribution. (a) The percentage point $\chi^2_{\alpha,k}$. (b) The upper percentage point $\chi^2_{0.05,10} = 18.31$ and the lower percentage point $\chi^2_{0.95,10} = 3.94$.

image

Confidence Intervals for σ^2 and σ

If s^2 is the sample variance from a random sample of n observations from a normal distribution with unknown variance σ^2 , then a $100(1-\alpha)\%$ confidence interval on σ^2 is

$$\frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}}$$

where $\chi^2_{\alpha/2,n-1}$ and $\chi^2_{1-\alpha/2,n-1}$ are the upper and lower $100\alpha/2$ percentage points of the χ^2 -distribution with n-1 degrees of freedom

Problem 8-36 (6th edition)

V8-36. The sugar content of the syrup in canned peaches normally distributed. A random sample of n = 10 cans yield a sample standard deviation of s = 4.8 milligrams. Find: 95% two-sided confidence interval for σ .

image

									AP	PENDIX A	6.
					\						
				/		X					
					z	2 a.v					
Table III α	Percentage l										
2	.995	.990	.975	.950	.900	.500	.100	.050	.025	.010	.005
1	+00.	+00	+00	+00.	.02	.45	2.71	3.84	5.02	6.63	7.8
2	.01	.02	.05	.10	.21	1.39	4.61	5.99	7.38	9.21	10.6
3	.07	.11	.22	.35	.58	2.37	6.25	7.81	9.35	11.34	12.8
4	.21	.30	.48	.71	1.06	3.36	7.78	9.49	11.14	13.28	14.8
5	.41	.55	.83	1.15	1.61	4.35	9.24	11.07	12.83	15.09	16.7
7	.68	.87	1.24	1.64	2.20	5.35	10.65	12.59	14.45	16.81	18.5
8	.99	1.24	1.69	2.17	2.83	6.35	12.02	14.07	16.01	18.48	20.2
9	1.34	1.65	2.18	2.73	3.49	7.34	13.36	15.51	17.53	20.09	21.9
10	1.73 2.16	2.09	2.70	3.33	4.17	8.34	14.68	16.92	19.02	21.67	23.59
11	2.16	2.56	3.25	3.94	4.87	9.34	15.99	18.31	20.48	23.21	25.19
12	3.07	3.05	3.82	4.57	5.58	10.34	17.28	19.68	21.92	24.72	26.76
13	3.07	3.57	4.40	5.23	6.30	11.34	18.55	21.03	23.34	26.22	28.30
14	4.07	4.11	5.01	5.89	7.04	12.34	19.81	22.36	24.74	27.69	29.82
15	4.60	4.66	5.63	6.57	7.79	13.34	21.06	23.68	26.12	29.14	31.32
16	5.14	5.23	6.27	7.26	8.55	14.34	22.31	25.00	27.49	30.58	32.80
17	- 5.70	6.41		7.96	9.31	15.34	23.54	26.30	28.85	32.00	34.27
18	6.26	7.01	7.56 8.23	8.67 9.39	10.09	16.34	24.77	27.59	30.19	33.41	35.72
19	6.84	7.63	8.23		10.87	17.34	25.99	28.87	31.53	34.81	37.16
20	7.43	8.26	9.59	10.12	11.65	18.34	27.20	30.14	32.85	36.19	38.58
21	8.03	8.90	10.28	10.85	13.24	19.34	28.41	31.41	34.17	37.57	40.00
22	8.64	9.54	10.28	12.34	14.04	20.34	29.62	32.67	35.48	38.93	41.40
23	9.26	10.20	11.69	13.09		21.34	30.81	33.92	36.78	40.29	42.80
24	9.89	10.86	12.40	13.85	14.85	22.34	32.01 33.20	35.17	38.08	41.64	44.18
25	10.52	11.52	13.12	14.61	16.47	24.34		36.42	39.36	42.98	45.56
26	11.16	12.20	13.84	15.38	17.29	25.34	34.28 35.56	37.65 38.89	40.65	44.31	46.93
27	11.81	12.88	14.57	16.15	18.11	26.34	36.74	40.11	41.92	45.64	48.29
28	12.46	13.57	15.31	16.93	18.94	27.34	37.92	41.34	43.19	46.96	49.65
29	13.12	14.26	16.05	17.71	19.77	28.34	39.09	42.56	44.46 45.72	48.28	50.99
30	13.79	14.95	16.79	18.49	20.60	29.34	40.26	43.77	46.98	49.59	52.34
40	20.71	22.16	24.43	26.51	29.05	39.34	51.81	55.76	59.34	50.89	53.67
50	27.99	29.71	32.36	34.76	37.69	49.33	63.17	67.50	71.42	63.69 76.15	66.77 79.49
60	35.53	37.48	40.48	43.19	46.46	59.33	74,40	79.08	83.30	88.38	91.95
70	43.28	45,44	48.76	51.74	55.33	69.33	85.53	90.53	95.02	100.42	104.22
80	51.17	53.54	57.15	60.39	64.28	79.33	96.58	101.88	106.63	112.33	
90	59.20	61.75	65.65	69.13	73.29	89.33	107.57	113.14	118.14	124.12	116.32
00	67.33	70.06	74.22	77.93	82.36	99.33	118.50				

image

One-sided confidence bounds

- Are easy to construct
- Use only the appropriate upper or lower bound
- Change $\chi^2_{\alpha/2,n-1}$ to $\chi^2_{\alpha,n-1}$ or $\chi^2_{1-\alpha/2,n-1}$ to $\chi^2_{1-\alpha,n-1}$
- See eqn (8-20) on page 184

Chapter 8, Case 3 Practice Problems

Large-Sample CI for a Population Proportion (Case 4)

- Recall from chapter 4, that the sampling distribution of \hat{P} is approximately normal with mean p and variance p(1-p)/p, if n is not too close to either 0 or 1 and if n is relatively large.
- Typically, we require both $np \geq 5$ and $n(1-p) \geq 5$ f n is large, the distribution of

$$Z = \frac{X - np}{\sqrt{np(1-p)}} = \frac{\widehat{P} - p}{\sqrt{\frac{p(1-p)}{n}}}$$

is approximately standard normal.

If \hat{p} is the proportion of observations in a random sample of size n that belongs to a class of interest, an approximate $100(1-\alpha)\%$ confidence interval on the proportion p of the population that belongs to this class is

$$\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \le p \le \hat{p} + z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

where $z_{\alpha/2}$ is the upper $\alpha/2$ percentage point of the standard normal distribution

Other Considerations

• We can select a sample so that we are $100(1-\alpha)\%$ confident that error $E=|p-\hat{P}|$ using

$$n = \left(\frac{Z_{\alpha/2}}{F}\right)^2 p(1-p)$$

An upper bound on is given by

$$n = \left(\frac{Z_{\alpha/2}}{E}\right)^2 (0.25)$$

One-sided confidence bounds are given in eqn (8-26) on page 187

Guidelines for Constructing Confidence Intervals

• Review excellent guide given in Table 8-1

Other Interval Estimates

- When we want to predict the value of a single value in the future, a prediction interval is used
- A **tolerance interval** captures $100(1-\alpha)\%$ of observations from a distribution

Prediction Interval for a Normal Distribution

- Excellent discussion on pages 189 190
- A $100(1-\alpha)\%$ PI on a single future observation from a normal distribution is given by

$$\bar{x} - t_{\alpha/2, n-1} s \sqrt{1 + \frac{1}{n}} \le X_{n+1} \le \bar{x} + t_{\alpha/2, n-1} s \sqrt{1 + \frac{1}{n}}$$

Tolerance Intervals for a Normal Distribution

• A **tolerance interval** to contain at least $\gamma\%$ of the values in a normal population with confidence level $100(1-\alpha)\%$ is

$$\bar{x} - ks, \bar{x} + ks$$

where k is a tolerance interval factor for the normal distribution found in appendix A Table XII. Values are given for $1-\alpha$ =0.9, 0.95 and 0.99 confidence levels and for $\gamma=.90$, .95, and .99% probability of coverage

 One-sided tolerance bounds can also be computed. The factors are also in Table XII