MANE 3332.05

Lecture 22

Agenda

- Continue Chapter 8 lecture
- Chapter 8, Case 1 Quiz (assigned 11/11/2025, due 11/13/2025)
- Chapter 8, Case 2 Practice Problems (assigned 11/11/2025, due 11/13/2025)
- New: Chapter 8, Case 2 Quiz (assigned 11/13/2025, due 11/18/2025)
- New: Chapter 8, Case 3 Practice Problems (assigned 11/13/2025, due 11/18/2025)
- Attendance
- Questions?

Handouts

- Lecture 22 Slides
- Lecture 22 Slides marked

11	11/11 - Chapter 8 (part 2)	11/13 - Chapter 8 (part 3)
12	11/18 - Chapter 8 (part 4)	11/25 - Chapter 9 (part 1)
13	11/25 - Chapter 9 (part 2)	11/27 - Thanksgiving Holiday (no class)
14	12/2 - Chapter 9 (part 3)	12/4 - Linear Regression

Thursday Lecture

11/12 Chapter 0 /part 2)

12/11 - Study Day (no class)

Tuesday Lecture

11/11 Chantar 0 /nort 2)

12/9 - Review Session

Week

15

The final exam for MANE 3332.01 is Thursday December 18,

2025 at 10:15 AM - 12:00 PM.

Summary of One-Sample Hypothesis-Testing Procedures

Case	Null Hypothesis	Test Statistic	Alternative Hypothesis	Fixed Significance Level Criteria for Rejection	P - value	O.C. Curve Parameter	O.C. Curve Appendix Chart VII
1.	$H_0: \mu = \mu_0$	$\overline{r} - \mu_0$	$H_1: \mu \neq \mu_0$	$ z_0 > z_{\alpha/2}$	$P = 2[1 - \Phi(z_0)]$	$d = \mu - \mu_0 /\sigma$	a, b
	σ^2 known	$z_0 = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$	$H_1: \mu > \mu_0$	$z_0 > z_\alpha$	Probability above z_0 $P = 1 - \Phi(z_0)$	$d = (\mu - \mu_0)/\sigma$	c,d
			$H_1: \mu < \mu_0$	$z_0 < -z_\alpha$	Probability below z_0 $P = \Phi(z_0)$	$d = (\mu_0 - \mu)/\sigma$	c,d
2.	$H_0: \mu = \mu_0$ σ^2 unknown	$t_0 = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$	H_1 : $\mu \neq \mu_0$	$ t_0 > t_{\alpha/2, n-1}$	Sum of the probability above $ t_0 $ and below $- t_0 $	$d = \mu - \mu_0 /\sigma$	e, f
			$H_1: \mu > \mu_0$	$t_0 > t_{\alpha,n-1}$	Probability above to	$d = (\mu - \mu_0)/\sigma$	g,h
			$H_1: \mu < \mu_0$	$t_0 < -t_{\alpha, n-1}$	Probability below t ₀	$d = (\mu_0 - \mu)/\sigma$	g,h
3.	$H_0: \sigma^2 = \sigma_0^2$	$x_0^2 = \frac{(n-1)s^2}{\sigma_0^2}$	$H_1: \sigma^2 \neq \sigma_0^2$	$\chi_0^2 > \chi_{\alpha/2, n-1}^2$ or $\chi_0^2 < \chi_{1-\alpha/2, n-1}^2$	See text Section 9.4.	$\lambda = \sigma/\sigma_0$	i, j
			$H_1: \sigma^2 > \sigma_0^2$	$\chi_0^2 > \chi_{\alpha,n-1}^2$		$\lambda = \sigma/\sigma_0$	k, l
			$H_1: \sigma^2 < \sigma_0^2$	$\chi_0^2 < \chi_{1-\alpha,n-1}^2$		$\lambda = \sigma/\sigma_0$	m, n
4.	$H_0: p = p_0$	$r - np_0$	$H_1: p \neq p_0$	$ z_0 > z_{\alpha/2}$	$p = 2[1 - \Phi(z_0)]$	3-4	3-4
	H_0 , $p = p_0$	$z_0 = \frac{x - np_0}{\sqrt{np_0(1 - p_0)}}$	$H_1: p > p_0$ $H_2: p > p_0$	$z_0 > z_\alpha$	Probability above z_0 $p = 1 - \Phi(z_0)$	3-4	3-4
			$H_1: p < p_0$	$z_0 < -z_\alpha$	Probability below z_0 $P = \Phi(z_0)$	3-4	3–4

Summary of One-Sample Confidence Interval Procedures

Case	Problem Type	Point Estimate	Two-sided $100(1-\alpha)$ Percent Confidence Interval	
1.	Mean μ , variance σ^2 known	\overline{x}	$\overline{x} - z_{\alpha/2}\sigma/\sqrt{n} \le \mu \le \overline{x} + z_{\alpha/2}\sigma/\sqrt{n}$	
2.	Mean μ of a normal distribution, variance σ^2 unknown	\bar{x}	$\overline{x} - t_{\alpha/2, n-1} s / \sqrt{n} \le \mu \le \overline{x} + t_{\alpha/2, n-1} s / \sqrt{n}$	
3.	Variance σ^2 of a normal distribution	s ²	$\frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}}$	
4.	Proportion or parameter of a binomial distribution p	p	$\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \le p \le \hat{p} + z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	

image

Confidence Interval for σ^2 and σ (Case 3)

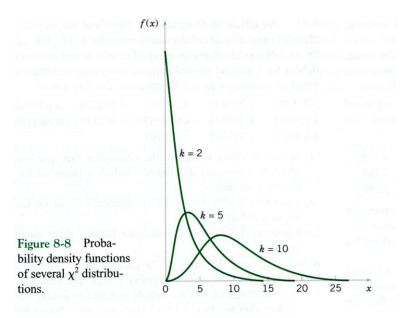
- Section 8-3 presents a CI for σ^2 or σ
- Requires the χ^2 (chi-squared) distribution

Let $X_1, X_2, ..., X_n$ be a random sample from a normal distribution with mean μ and variance σ^2 and let S^2 be the sample variance. Then the random variable

$$\chi^2 = \frac{(n-1)S^2}{\sigma^2}$$

has a chi-square (χ^2) distribution with n-1 degrees of freedom

- A table of the upper percentage points of the χ^2 distribution are given in Table 4 in the appendix
- Figure 8-9 on page 183 explains the percentage points of the χ^2 distribution



image

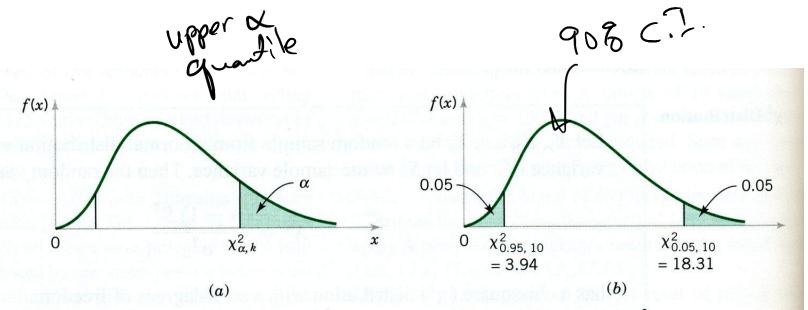


Figure 8-9 Percentage point of the χ^2 distribution. (a) The percentage point $\chi^2_{\alpha,k}$. (b) The upper percentage point $\chi^2_{0.05,10} = 18.31$ and the lower percentage point $\chi^2_{0.95,10} = 3.94$.

image

Confidence Intervals for σ^2 and σ If s^2 is the sample variance from a random sample of n observations from a normal distribution with unknown variance σ^2 , then a 100(1- α)% confidence interval on σ^2 is

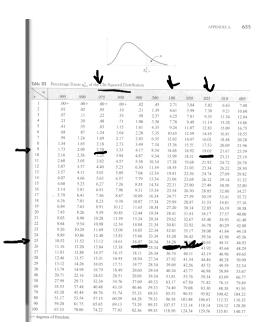
$$\int_{-\infty}^{\infty} \frac{(n-1)s^2}{\chi_{\alpha/2,n-1}^2} \le \sigma^2 \le \frac{(n-1)s^2}{\chi_{1-\alpha/2,n-1}^2} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{(n-1)s^2}{\chi_{1-\alpha/2,n-1}^2} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{(n-1)s^2}{\chi_{1-\alpha/2,n-1}^2} = \int_{-\infty}^{\infty} \frac{$$

where $\chi^2_{\alpha/2,n-1}$ and $\chi^2_{1-\alpha/2,n-1}$ are the upper and lower $100\alpha/2$ percentage points of the χ^2 -distribution with n-1 degrees of freedom

$$\sqrt{\frac{(n-1)5^2}{\chi^2_{1/2,n-1}}}$$
 $\leq \sigma \leq \sqrt{\frac{(n-1)5^2}{\chi^2_{1-\alpha/2,n-1}}}$

/8-36. The sugar content of the syrup in canned peaches a normally distributed. A random sample of n = 10 cans yield a sample standard deviation of s = 4.8 milligrams. Find: 95% two-sided confidence interval for σ .

$$\frac{(n-1)5^{2}}{7^{2} \cdot 0^{2} \cdot 1} = \frac{2}{7^{2} \cdot 0^{2} \cdot 1} = \frac{2}{7^$$



image

$$(N-1)S^2$$

$$= \sum_{A/2,N-1} (N-1)S^2$$

$$= \sum_{A/2,N-1} (N-1)S^2$$
One-sided confidence bounds
• Are easy to construct

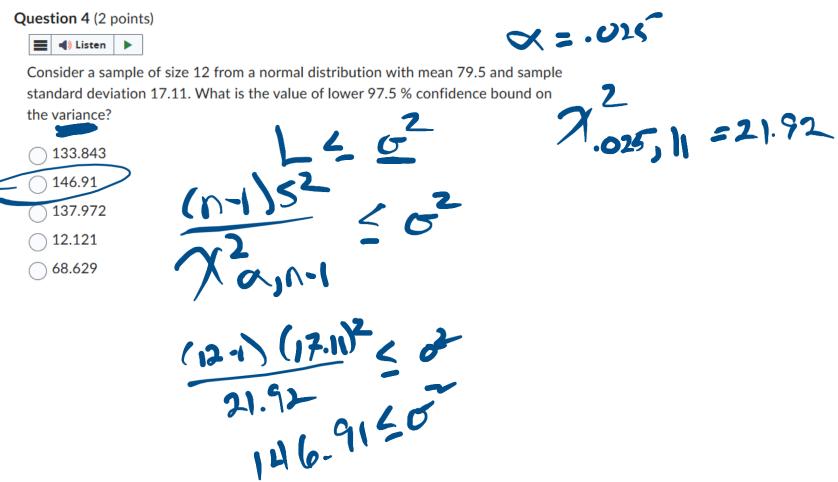
• Change $\chi^2_{\alpha/2,n-1}$ to $\chi^2_{\alpha,n-1}$ or $\chi^2_{1-\alpha/2,n-1}$ to $\chi^2_{1-\alpha,n-1}$

• See eqn (8-20) on page 184

Use only the appropriate upper or lower bound

Chapter 8, Case 3 Practice Problems

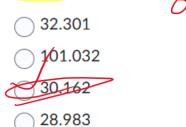
1-0/2:1-722=1-9=9 Question 2 (2 points) listen Consider a sample of size 26 from a normal distribution with mean 127.1 and sample standard deviation 25.47. What is the value of a two-sided 80.0 % confidence interval for the variance? 1/2/2/1 = 7/1/25 (528.619,856.284) x2-2/20-1 = X-9,25 (456.075,938.0) (120.525, 133.675)(21.719, 31.38)= 473.105 402 (26-1)(25.47)² 984



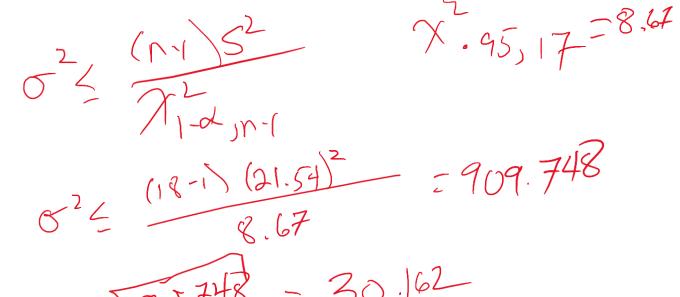
Question 5 (2 points)

Consider a sample of size 18 from a normal distribution with mean 92.2 and sample standard deviation 21.54. What is the value of an upper 95.0 % confidence bound on

the standard deviation?



909.748



a = .05

Large-Sample CI for a Population Proportion (Case 4)

- Recall from chapter 4, that the sampling distribution of \hat{P} is approximately normal with mean p and variance p(1-p)/p, if n is not too close to either 0 or 1 and if n is relatively large.
- Typically, we require both $np \geq 5$ and $n(1-p) \geq 5$ f n is large, the distribution of

$$Z = \frac{X - np}{\sqrt{np(1-p)}} = \frac{\hat{P} - p}{\sqrt{\frac{p(1-p)}{n}}}$$

is approximately standard normal.

toful 5

If \hat{p} is the proportion of observations in a random sample of size n that belongs to a class of interest, an approximate $100(1-\alpha)\%$ confidence interval on the proportion p of the population that belongs to this class is

$$\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \le p \le \hat{p} + z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

where $z_{\alpha/2}$ is the upper $\alpha/2$ percentage point of the standard normal distribution

Other Considerations

• We can select a sample so that we are $100(1-\alpha)\%$ confident that error $E=|p-\hat{P}|$ using

sing
$$n = \left(\frac{Z_{\alpha/2}}{E}\right)^2 p(1-p)$$

An upper bound on is given by

$$n = \left(\frac{Z_{\alpha/2}}{E}\right)^2 (0.25)$$

One-sided confidence bounds are given in eqn (8-26) on page 187

Guidelines for Constructing Confidence Intervals

• Review excellent guide given in Table 8-1

Other Interval Estimates

- When we want to predict the value of a single value in the future, a prediction interval is used
- A **tolerance interval** captures $100(1-\alpha)\%$ of observations from a distribution

Prediction Interval for a Normal Distribution

- Excellent discussion on pages 189 190
- A $100(1-\alpha)\%$ PI on a single future observation from a normal distribution is given by

$$\bar{x} - t_{\alpha/2, n-1} s \sqrt{1 + \frac{1}{n}} \le X_{n+1} \le \bar{x} + t_{\alpha/2, n-1} s \sqrt{1 + \frac{1}{n}}$$

Tolerance Intervals for a Normal Distribution

• A **tolerance interval** to contain at least $\gamma\%$ of the values in a normal population with confidence level $100(1-\alpha)\%$ is

$$\bar{x} - ks$$
, $\bar{x} + ks$

where k is a tolerance interval factor for the normal distribution found in appendix A Table XII. Values are given for $1-\alpha$ =0.9, 0.95 and 0.99 confidence levels and for $\gamma=.90$, .95, and .99% probability of coverage

 One-sided tolerance bounds can also be computed. The factors are also in Table XII