Attendanco: 1-10

**MANE 3332.05** 

## Lecture 14

#### **Agenda**

- Start Part Two of Course
- Major Quiz Announcement
  - All Part One Quizzes will be modified to two attempts and highest grade counted
  - Deadline for completing Part One Quizzes is 10/23/2025 12:30 PM
- Normal Quiz (assigned 10/14/2025, due 10/16/2026)
- Exponential Practice Problems (assigned 10/14/2025, due 10/16/2025)
- Exponential Quiz (assigned 10/16/2025, due 10/23/2025)
- Schedule
- Attendance
- Questions?

### **Handouts**

- Lecture 14 slides (Powerpoint)
- Lecture 14 slides marked (pdf)

| Tuesday Date and Topic(s)                           | Thursday Date and Topic(s)               |
|-----------------------------------------------------|------------------------------------------|
| <b>10/14:</b> Exponential and Weibull distributions | <b>10/16:</b> Chapter 5 (not on midterm) |
| 10/21: Midterm Review                               | 10/23: Midterm Exam                      |

**Class Schedule** 

## Chapter Five

- Joint Probability Distributions
- Contains eight sections
- We will only examine 5.4 (Covariance and Correlation) and 5.6 (linear functions of random variables)

## **Covariance and Correlation**

#### Covariance

- When two or more variables are defined on a probability space, it is useful to describe how they vary together
- A common measure of the relationship between two random variables is the covariance

$$\sigma_{XY} = E(XY) - \mu_X \mu_Y$$

## Covariance, continued

• Theoretically for two continuous random variables with joint probability distribution function  $f_{XY}(x,y)$ , the covariance is found by

by 
$$\sigma_{XY} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \, y f_{XY}(x, y) dx dy - \mu_X \mu_Y$$

# - 00 L Oxy < 00

## **Covariance and Independence**

• If X and Y are independent random variables,

$$\sigma_{XY} = 0$$

• However,  $\sigma_{XY} = 0$  does not imply that X and Y are independent. Textbook mentions Figure 5-13(d)



SPECIAL CASE. IF X and Y are normal random variables and have  $\sigma_{XY}=0$ , then X and Y are independent

Circle Ozg=0 x Oxy ≈0,0 300 Covariance but not independent

## **Sample Covariance**

• To calculate the sample covariance use

$$s_{XY} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})$$

Easily done in software



#### Correlation

The correlation between two random variables X and Y is

$$\rho_{XY} = \frac{\text{cov}(X, Y)}{\sqrt{V(X)V(Y)}} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

For any two random variables X and Y

$$-1 \le \rho_{XY} \le 1$$

• If X and Y are independent  $\rho_{XY} = 0$ . The converse is not true.

## **Sample Correlation Coefficient**

• To calculate the sample correlation coefficient,

$$r_{XY} = \frac{S_{XY}}{\sqrt{S_X^2 S_Y^2}}$$

## Summary

- Correlation is a linear measure and will not work for nonlinear relationships
- Correlation is a measure of association; it does not prove cause and effect relationships
  - -Examine examples at **Spurious Correlations website**

## Linear Functions of Random Variables

#### **Functions of Random Variables**

• Additive System. Let X be a random variable with mean  $\mu$  and variance  $\sigma^2$ . Define a new random variable Y

It follows that 
$$F(X) = F(X) + F(C)$$

$$E(Y) = F(X) + C = \mu + C$$

$$V(Y) = V(X) + 0 = \sigma^2$$

$$V(Y) = V(X) + 0 = \sigma^2$$

## Linear Functions of Random Variables

#### **Functions of Random Variables**

• Multiplicative System. Consider the new random variable YY = cX

It follows that

$$E(Y) = E(cX) = cE(X) = c\mu$$

$$V(Y) = V(cX) = c^2V(x) = c^2\sigma^2$$

$$\overline{X} = \sum_{i=1}^{n} \sum_{x_i} X_i = \sum_{i=1}^{n} \frac{1}{n} X_i$$

# Linear Combination Case for independent rondon which les

- A **linear combination** of the random variables  $X_1, X_2, ..., X_n$  is  $Y = c_1 X_1 + c_2 X_2 + \cdots + c_n X_n$
- The mean of a linear combination of random variables is  $E(Y) = c_1 \mu_1 + c_2 \mu_2 + \dots + c_n \mu_n$
- The variance of a linear combination of random variables is  $V(Y) = c_1^2 \sigma_1^2 + c_2^2 \sigma_2^2 + \dots + c_n^2 \sigma_n^2$

$$\overline{X} = \overline{X} + \overline{X}$$

$$E(\overline{X}) = E(\overline{X} + \overline{X}) = \overline{X} = (\overline{X} \times \overline{X})$$

$$= \overline{X} = \overline{X} \times \overline{X}$$

$$= \overline{X} = \overline{X} = \overline{X} = \overline{X}$$

## **Linear Combination of Non-independent R.V.**

Let  $X_1, X_2, ..., X_n$  be random variables with means  $E(X_i) = \mu_i$ , variances  $V(X_i) = \sigma_i^2$  and covariances  $Cov(X_i, X_i)$  for i, j =1,2, ..., n with i < j

The linear combination is defined to be

$$Y = c_1 X_1 + c_2 X_2 + \dots + c_n$$

The mean of Y is

ear combination is defined to be 
$$Y=c_1X_1+c_2X_2+\cdots+c_nX_n$$
 ean of  $Y$  is 
$$E(Y)=c_1\mu_1+c_2\mu_2+\cdots+c_n\mu_n$$

## Linear Combination of Non-independent R.V.

and the variance is

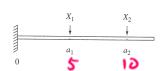
$$V(Y) = c_1^2 \sigma_i^2 + c_2^2 \sigma_i^2 + \dots + c_n^2 \sigma_n^2 + 2\sum_{i < i} c_i c_i \operatorname{Cov}(X_i, X_i)$$

$$E(3x_1+10x_3)$$
= 5E(x\_1) + 10E(x\_2)  
= 5G(x\_1) + 10(4) = 50  

$$V(5x_1 + 10x_3)$$
= 52V(x\_1) + 10<sup>2</sup>V(x\_2)  
= 5<sup>2</sup>(.5)<sup>2</sup> + 10<sup>2</sup>(1)<sup>2</sup>  
= 106.25  
= 106.25 = 10.31

244 CHAPTER 5 Joint Probability Distributions and Random Source: Devoce (2000) Prob & Steelistig

**66.** If two loads are applied to a cantilever beam as shown in the accompanying drawing, the bending moment at 0 due to the loads is  $a_1X_1 + a_2X_2$ .



deviation

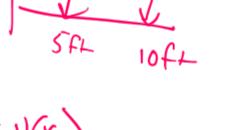
- a. Suppose that  $X_1$  and  $X_2$  are independent rv's with means 2 and 4 kips, respectively, and standard deviations .5 and 1.0 kip, respectively. If  $a_1 = 5$  ft and  $a_2 = 10$  ft, what is the expected bending moment and what is the standard deviation of the bending moment?
- b. If  $X_1$  and  $X_2$  are normally distributed, what is the probability that the bending moment will exceed 75 kip-ft?
- c. Suppose the positions of the two loads are random variables. Denoting them by A<sub>1</sub> and A<sub>2</sub>, assume that these variables have means of 5 and 10 ft, respectively, that each has a standard deviation of .5, and that all A<sub>i</sub>'s and X<sub>i</sub>'s are independent of one another. What is the expected moment now?
- **d.** For the situation of part (c), what is the variance of the bending moment?
- e. If the situation is as described in part (a) except that Corr(X<sub>1</sub>, X<sub>2</sub>) = .5 (so that the two loads are not independent), what is the variance of the bending moment?

### linear combination problem

e. If the situation is as described in part (a) except that  $Corr(X_1, X_2) = .5$  (so that the two loads are not independent), what is the variance of the bending moment?

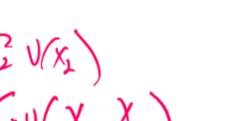
g moment?

$$\frac{1}{2} = \frac{1}{2} \times 1 + 10 \times 2 = \frac{1}{2} \times 1 \times 10 \times 10^{-1}$$



$$\frac{1}{2} = \frac{1}{2} \times \frac{1}{1} \times \frac{1}{2} = \frac{1}{2} \times \frac{1}{2} \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} \times \frac{1}$$

V(
$$\chi_{x_1}$$
  $\xrightarrow{S}$   $\chi_1$  + 10 $\chi_2$ ) =  $\zeta_1$   $\chi(\chi_1)$  +  $\zeta_2$   $\chi(\chi_1)$  +  $\zeta_2$   $\chi(\chi_1)$  +  $\zeta_3$   $\chi(\chi_1)$ 



$$C_{6} \cup (X_{1}, X_{2})$$

$$V(s)^{2}(1)^{2} = .5$$

$$C_{6} \cup (X_{1}, X_{2}) = .5^{2}(.5^{2}) = .25$$

$$V(sX_{1} + .0X_{2}) = 5^{2} \vee (X_{1}) + 10^{2} \vee (X_{2}) + 26^{-1}(.0) (.25^{2})$$

$$= 5^{2}(.5^{-1})^{2} + 10^{2}(.1)^{2} + 2(.5^{-1})(.0)(.25^{-1})$$

= 131.25

## Linear Combination Practice Problems

#### **Central Limit Theorem**

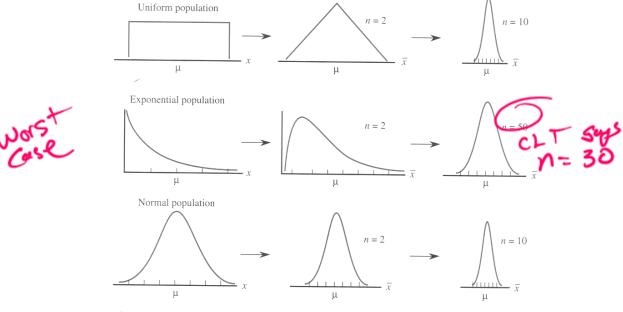
If  $X_1, X_2, ..., X_n$  is a random sample of size n taken from a population with mean  $\mu$  and variance  $\sigma^2$ , and if  $\overline{X}$  is the sample mean, the limiting form of the distribution of

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

as  $n \to \infty$ , is the standard normal distribution

- Incredibly useful theorem
- See example below
- *n* often does not have to be very large
  - If the population is continuous, unimodal and symmetric, often n can be as small as 4 or 5
  - Larger samples will be required in other situations
  - If  $n \ge 30$  the normal approximation will work satisfactorily regardless of the shape of the population

#### **CLT Illustration**



**Figure 5.18** The Central Limit Theorem: The sampling distribution of  $\overline{x}$  approaches a normal distribution as the sample size n increases.

#### central limit theorem illustration