

MANE 3351

Lecture 14

Classroom Management

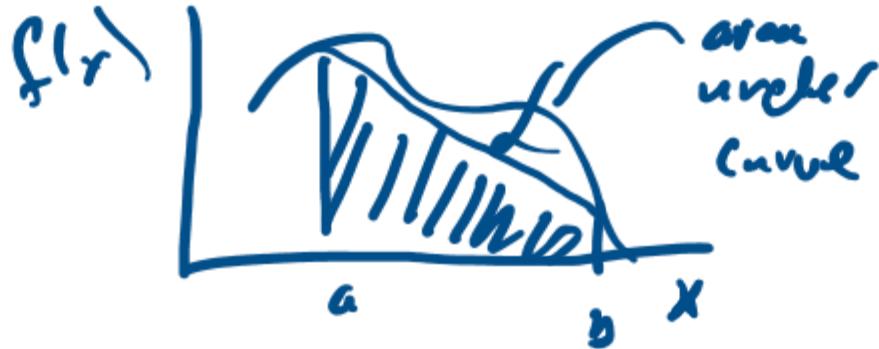
Agenda

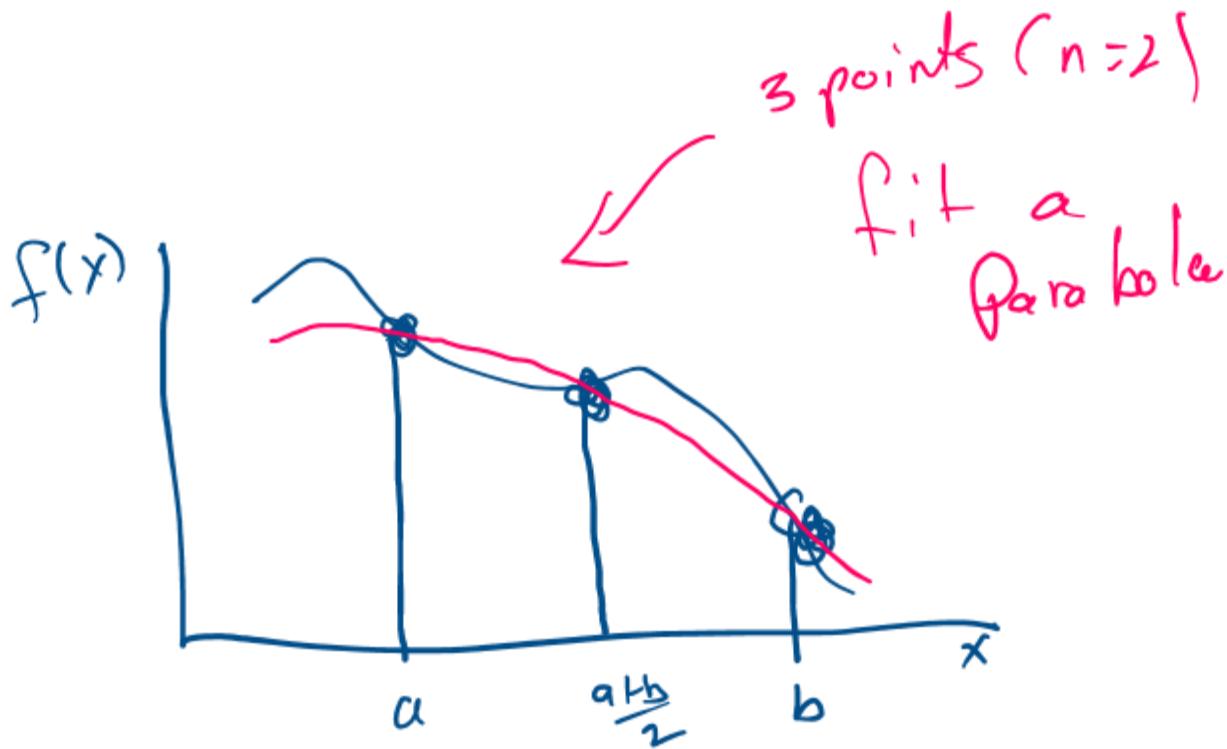
- Simpson's Rule
- Lab 5 due before 9:30 AM
- Lab 6 Assigned today
- Homework 3 due 10/22/2025 before 11:59 PM

Calendar

Week	Monday Lecture	Wednesday Lecture
8	10/20: Simpson's Rule	10/22: Romberg Integration
9	10/27: Gaussian Quadrature	10/29: Numerical Differentiation (not on Test 2)
10	11/3: Linear Algebra	11/5: Test 2 (Root Finding and Numerical Integration)

Resources


Handouts


- Lecture 14 Slides
- Lecture 14 Marked Slides

Lecture 14

Today's topic is Simpson's Rule.

- Simpson's (1/3) rule is Newton-Cotes with $n = 2$
- Chapra and Canale (2015)¹ illustrate Simpson's rule in the figure shown below Simpson's Rule

Definition of Simpson's Rule

- Chapra and Canale(2015)² provide the following definition of Simpson's rule

$$I = \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)]$$

a *b*

where $h = (b - a)/2$

- Note that Simpson's rule is of the form

$$I \approx (b - a) \frac{f(x_0) + 4f(x_1) + f(x_2)}{6}$$

I \approx width \times average height

Simpson's Rule Error Analysis

- Chapra and Canale (2015)³ provides the following definition:

$$I = \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)] - \frac{1}{90} f^{(4)}(\xi) h^5$$

I = Simpson's 1/3 approximation – Truncation error

Trapezoid Rule, continued

Chapra and Canale (2015)³ provided the following formulae

- $I = (b - a) \frac{f(a) + f(b)}{2}$
- $E = -\frac{1}{12} f''(\xi) (b - a)^3$

Multiple Applications of Simpson's Rule

- The number of segments must be even
- The formula is

$$I \approx (b - a) \frac{f(x_0) + 4 \sum_{i=1,3,5}^{n-1} f(x_i) + 2 \sum_{j=2,4,6}^{n-2} f(x_j) + f(x_n)}{3n}$$

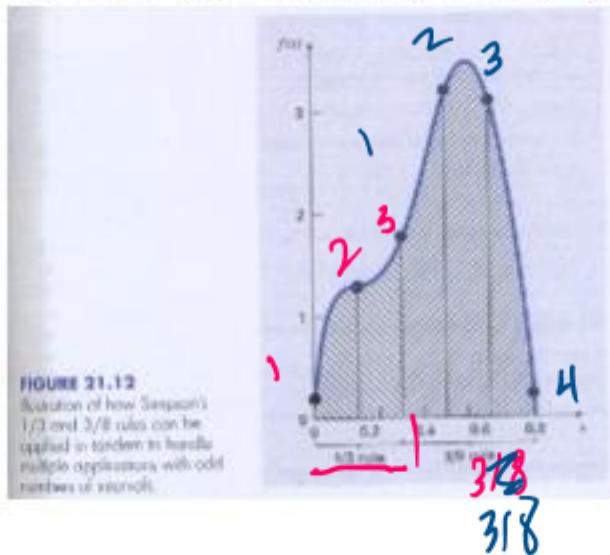
$$\text{where } h = \frac{b-a}{n}$$

Pseudo-code: Simpson's 1/3 Rule

- CodeSansar⁴ provides the following pseudo-code Simpson's 1/3 pseudo-code

Python Code for Multiple Simpson's 1/3 Rule

```
import math
def f(z):
    return (math.exp(-0.5*z**2) / ((2.0*math.pi)**0.5))


n=10
a=-5.0
b=0.0
h=(b-a)/n
sum=f(a)+f(b)
for i in range(1,n):
    # print(i)
    k=a+i*h
    if i%2==0:
        #print("even number")
        sum=sum+2.0*f(k)
    else:
        #print("odd number")
        sum=sum+4.0*f(k)
sum=sum*h/3.0
print("The area is {} after {} iterations".format(sum,n))
```


Simpson's 3/8 Rule

- Simpson's 3/8 rule is Newton-Cotes with $n = 3$
- Chapra and Canale (2015)⁵ illustrate Simpson's rule in the figure shown below Simpson's 3/8 Rule

- Chapra and Canale (2015)³ illustrate Simpson's rule in the figure shown below

Definition of Simpson's 3/8 Rule

- Chapra and Canale(2015)⁶ provide the following definition of Simpson's rule

$$I = \frac{3h}{8} [f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3)]$$

where $h = (b - a)/3$

- Note that Simpson's 3/8 rule is of the form

$$\begin{aligned} I &\approx (b - a) \frac{f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3)}{8} \\ I &\approx \text{width} \times \text{average height} \end{aligned}$$

Truncation Error of Simpson's 3/8 Rule

$$\begin{aligned} E_t &= -\frac{3}{80} h^5 f^{(4)}(\xi) \\ &= -\frac{(b-a)^5}{6480} f^{(4)}(\xi) \end{aligned}$$

Classroom Coding: One Interval of Simpson's 3/8 Rule

Notes

1. Chapra, S., and Canale, R., (2015), *Numerical Methods for Engineers*, 7th edition
2. Chapra, S., and Canale, R., (2015), *Numerical Methods for Engineers*, 7th edition
3. Chapra, S., and Canale, R., (2015), *Numerical Methods for Engineers*, 7th edition
4. <https://www.codesansar.com/numerical-methods/integration-simpson-1-3-method-algorithm.htm>
5. Chapra, S., and Canale, R., (2015), *Numerical Methods for Engineers*, 7th edition
6. Chapra, S., and Canale, R., (2015), *Numerical Methods for Engineers*, 7th edition