

MANE 3351

LECTURE 2

Classroom Management

Agenda

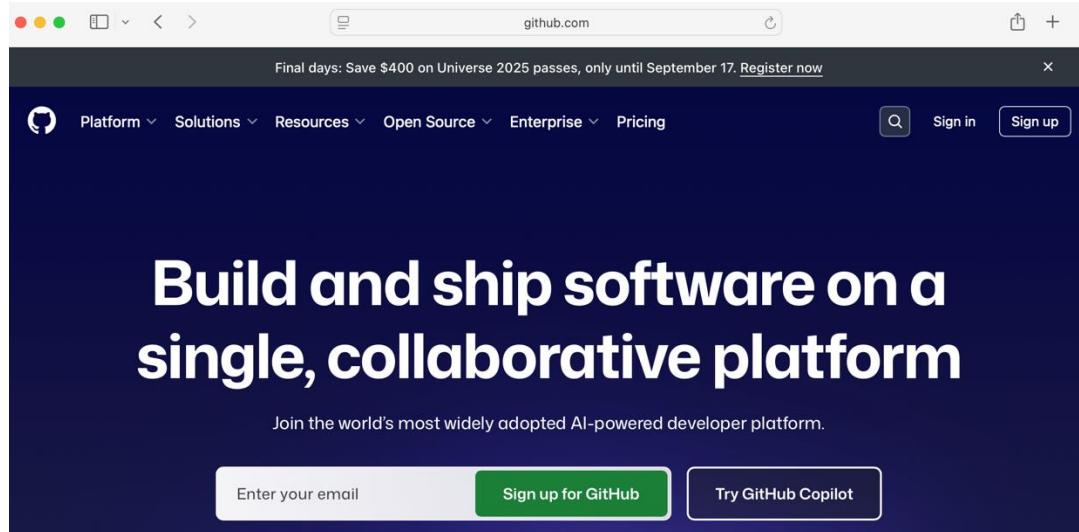
- Questions
- Review 1st day
- Introduction to Python
- Discuss lab today

Much of the lecture 2 material is a demonstration. Later in the course, we will learn these techniques.

RESOURCES

Handouts

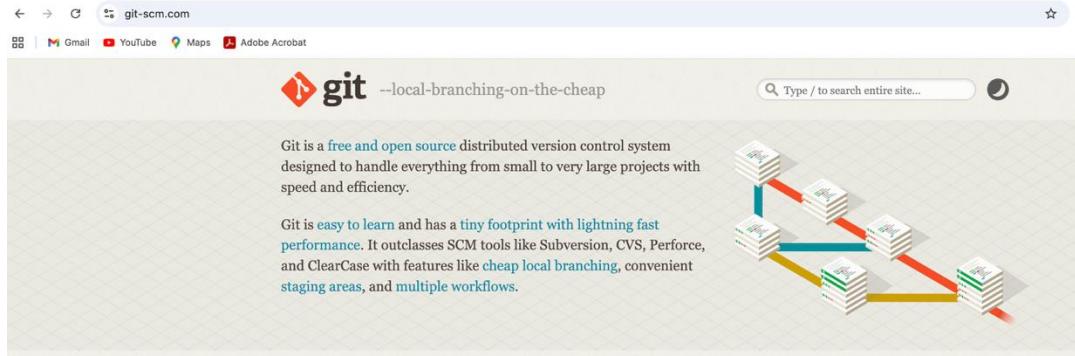
- Lecture 2 Slides
- Lecture 2 Marked Slides


Assignments

Create free GitHub account

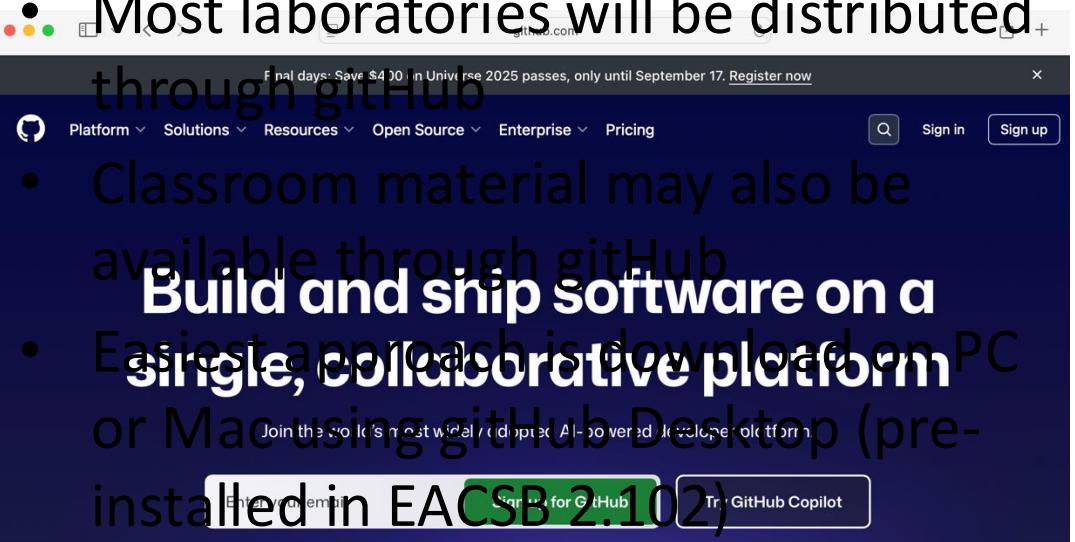
Student accounts are free

[GitHub Account Creation Checklist](#)


[GitHub Student Verification Information](#)

GitHub Home Page

Source


Git

git

GitHub

- Source
- Most laboratories will be distributed through GitHub
- Classroom material may also be available through GitHub
- Easiest approach is download on PC or Mac using GitHub Desktop (pre-installed in EACSB 2.102)

gitHub

GitHub Desktop

Source

GitHub Desktop

Graphical interface that makes using GitHub very easy to use

- Download GitHub Desktop for macOS

Focus on what matters instead of fighting with Git. Whether you're new to Git or a seasoned user, GitHub Desktop simplifies your development workflow

First use: clone repository

Download for Apple (64-bit) Download for Intel (64-bit)

Subsequent uses: pull repository (will update local material)

Please do not push

Experience the latest features and help improve future releases

Check out Beta

Download for Windows

Do you need to download for Windows?

Need to download the install for Windows?

Case 1 from [Dr. Timmer GitHub](#)

By downloading, you agree to the [Open Source Applications Terms](#).

Public Repository

gitHub Desktop

Python with Jupyter Notebook

- Standard Normal Case 1

```
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as sct
import math

a=0.5

x=np.linspace(-4,4,500)
y=sct.norm.pdf(x,0,1)
y2=0.0*x
maske =(x<a)

plt.plot(x,y,'b')
plt.fill_between(x,y,color='#666666',where=maske)
plt.plot(x,y2,'b')
plt.show()

answer=sct.norm.cdf(a,0,1)
print ("%8.6f" % (answer))
```

Methods for Acquiring Python Code

1. Clone repository to local machine using GitHub Desktop
2. Copy code from MANE 3351 Fall 2025 Public Repository
3. Copy code from lecture notes

Comments about Python Installation

- We will utilize Anaconda python that is pre-installed on lab computers
 - Discuss installing on personal computers
- Dr. Timmer will utilize a conda environment so that configure for MANE 3351 is stored separately and doesn't possible corrupt other environments
- Most of the time, Dr. Timmer will work from the command line on a Mac
- Quick demonstration on both Mac and Windows

First 4 Lines

- Imports allow external packages to be used
- Most standard packages are included in the Anaconda installation
 - **Matplotlib** “is a Python 2D plotting library which produces publication quality figures in a variety of hardcopy formats and interactive environments across platforms. Matplotlib can be used in Python scripts, the Python and IPython shells, the Jupyter notebook, web application servers, and four graphical user interface toolkits”
 - **NumPy** “is the fundamental package for scientific computing with Python. It contains among other things: 1). a powerful N-dimensional array object, 2). sophisticated (broadcasting) functions, 3. tools for integrating C/C++ and Fortran code, and 4). useful linear algebra, Fourier transform, and random number capabilities.”
 - **SciPy** “is a Python-based ecosystem of open-source software for mathematics, science, and engineering. In particular, these are some of the core packages: NumPy, SciPy library, Matplotlib, IPython, Sympy, and pandas.”
 - **Math** “provides access to the mathematical functions defined by the C standard.”

- Source
- Experiment with endpoint

Numpy Linspace

NumPy

User Guide API reference Building from source Development Release notes Learn More

numpy.rec.fromrecords
numpy.rec.fromstring
numpy.rec.fromfile
numpy.char.array
numpy.char.asarray
numpy.arange
numpy.linspace
numpy.logspace
numpy.geomspace
numpy.meshgrid
numpy.mgrid
numpy.ogrid
numpy.diag
numpy.diagflat
numpy.tri
numpy.tril
numpy.triu
numpy.vander
numpy.bmat
Array manipulation routines
Bit-wise operations
String functionality
Datetime support functions
Data type routines

numpy.linspace(*start*, *stop*, *num*=50, *endpoint*=True, *retstep*=False, *dtype*=None, *axis*=0, *, *device*=None) [source]

Return evenly spaced numbers over a specified interval.

The endpoint of the interval can optionally be excluded.

Changed in version 1.16.0: Non-scalar *start* and *stop* are now supported.

Changed in version 1.20.0: Values are rounded towards `-inf` instead of `0` when an integer `dtype` is specified. The old behavior can still be obtained with `np.linspace(start, stop, num).astype(int)`

Parameters:

***start* : array_like**
The starting value of the sequence.

***stop* : array_like**
The end value of the sequence, unless *endpoint* is set to False. In that case, the sequence consists of all but the last of `num + 1` evenly spaced samples, so that *stop* is excluded. Note that the step size changes when *endpoint* is False.

Numpy Linspace

Source

Installing User Guide [API reference](#) Building from source Development Release notes

[Home](#) > SciPy API > Statistical functions ([scipy.stats](#)) > `scipy.stats.norm`

scipy.stats.norm

Section Navigation

scipy
scipy.cluster
scipy.constants
scipy.datasets
scipy.fft
scipy.fftpack
scipy.integrate
scipy.interpolate
scipy.io
scipy.linalg
scipy.misc
scipy.ndimage
scipy.odr
scipy.optimize
scipy.signal
scipy.sparse
[scipy.stats](#)

Q Search

scipy.stats.norm

`norm` = `<scipy.stats._continuous_distns.norm_gen object>` [\[source\]](#)

A normal continuous random variable.

The location (`loc`) keyword specifies the mean. The scale (`scale`) keyword specifies the standard deviation.

As an instance of the `rv_continuous` class, `norm` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Methods

<code>rvs(loc=0, scale=1, size=1, random_state=None)</code>	Random variates.
<code>pdf(x, loc=0, scale=1)</code>	Probability density function.
<code>logpdf(x, loc=0, scale=1)</code>	Log of the probability density function.
<code>cdf(x, loc=0, scale=1)</code>	Cumulative distribution function.

scipy stats norm

Source

Matplotlib

Plot types User guide Tutorials Examples Reference Contribute Releases

3.9 (stable)

> Tutorials > Pyplot tutorial

Section Navigation

Pyplot tutorial

Image tutorial

The Lifecycle of a Plot

Artist tutorial

Pyplot tutorial

An introduction to the pyplot interface. Please also see [Quick start guide](#) for an overview of how Matplotlib works and [Matplotlib Application Interfaces \(APIs\)](#) for an explanation of the trade-offs between the supported user APIs.

Introduction to pyplot

`matplotlib.pyplot` is a collection of functions that make matplotlib work like MATLAB. Each `pyplot` function makes some change to a figure: e.g., creates a figure, creates a plotting area in a figure, plots some lines in a plotting area, decorates the plot with labels, etc.

On this page

Introduction to pyplot
Plotting with keyword strings
Plotting with categorical variables
Controlling line properties
Working with multiple figures and Axes
Working with text
Logarithmic and other nonlinear axes

matplotlib