

MANE 3351

Lecture 7

Classroom Management

Agenda

- Taylor Series Expansion
- Homework 2
- Schedule
- Lab session at 9:30

Resources

Handouts

- Lecture 7 Slides
- Lecture 7 Marked Slides

Assignments

- [Homework 1 \(assigned 9/22/2025, due 9/29/2025 \(before 11:59 PM\)\)](#)
- [Homework 2 \(assigned 9/24/2025, due 10/1/2025 \(before 9:30 AM - no late submissions\)\)](#)
- [Lab 3 \(assigned 9/24/2025, due 10/1/2025 \(before 9:30 AM\)\)](#)
- Read textbook pages 1 - 16

Schedule

Lecture/Lab	Date	Topic
7	9/24	Taylor Series, Homework 2 (due 10/1 - no late work), Lab 3 (due 10/1)
8	9/29	Roots of Equations, bisection method (not on Test 1)
9	10/1	Bisection Method Error Analysis, False Position (not on Test 1)
10	10/6	Test 1 (lectures 1-7)

Lecture Content

- Taylor Series Expansion

Taylor Series \rightarrow Already Solved

Familiar (and useful) examples of Taylor series are the following:

Taylor Series

Introduction to Taylor Series

Cheney and Kincaid [^1] provide some commonly used Taylor series.

How big should k be?

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{k=0}^{\infty} \frac{x^k}{k!} \quad (|x| < \infty) \quad (1)$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!} \quad (|x| < \infty) \quad (2)$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} \quad (|x| < \infty) \quad (3)$$

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots = \sum_{k=0}^{\infty} x^k \quad (|x| < 1) \quad (4)$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{x^k}{k} \quad (-1 < x \leq 1) \quad (5)$$

Taylor Series

Example

To find e^8 , recall $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$

$\frac{k}{0}$

1. $e^8 = 1$ $\leftarrow k=1$

2. $e^8 = 1 + x = 1 + 8$

2. $e^8 = \underline{1 + 8} + \frac{x^2}{2!} = 1 + 8 + \frac{64}{2}$

3. $e^8 = 1 + 8 + \frac{64}{2} + \frac{x^3}{3!} = 1 + 8 + \frac{64}{2} + \frac{512}{6}$

Python Code for Jupyter Notebook

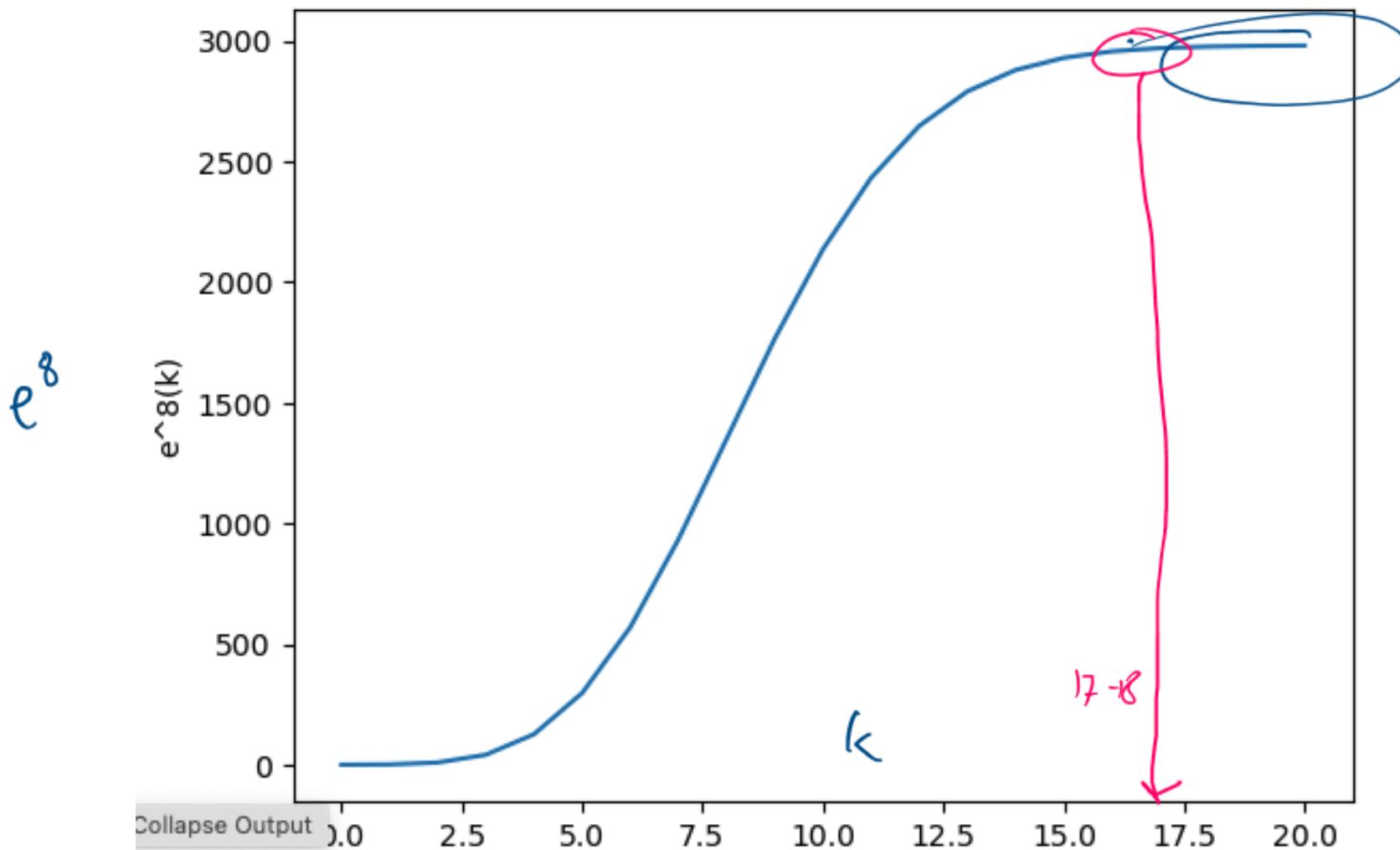
```
import math
import numpy as np
import matplotlib.pyplot as plt
def eTaylor(x, k):
    y=0.0
    for i in range(k):
        #print(i)
        y=y+(x**i)/math.factorial(i)
        #print("i=",i," y=",y, " i!= ",math.factorial(i)," x^i=",x**i)
    return y
k=np.arange(21)
print(k)
print(k[0])
y=0.0*k
for i in np.nditer(k):
    #print(i)
    y[i]=eTaylor(8,i)
#print(y)
#plotting code
fig, ax = plt.subplots()
ax.plot(k, y)
ax.set(xlabel='k', ylabel='e^8(k)',
       title='Taylor Series Approximation')
plt.show()
```

function

$$\frac{x^i}{i!}$$

$k \rightarrow$ is an array

Taylor Series Approximation



Source: textbook, page 14

$f^{(j)}(x_0) \rightarrow j^{\text{th}}$ derivative of $f(x)$

Taylor Series Expansion about a Point

Taylor's theorem: Suppose that $f(x)$ has $n + 1$ derivatives on (a, b) , and $x_0 \in (a, b)$. Then for each $x \in (a, b)$, there exists ξ , depending on x , lying strictly between x and x_0 such that

$$f(x) = f(x_0) + \sum_{j=1}^n \left(\frac{f^{(j)}(x_0)}{j!} (x - x_0)^j \right) + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}.$$

↙ Remainder or error term

n^{th} Taylor polynomial: $T_n(x) = f(x_0) + \sum_{j=1}^n \left(\frac{f^{(j)}(x_0)}{j!} (x - x_0)^j \right)$. *↙ Taylor Series Expansion*

Maclaurin polynomial: A Taylor polynomial expanded about $x_0 = 0$ is also called a Maclaurin polynomial.

Remainder term: $R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$ is precisely $-(T_n(x) - f(x))$.

Error term: Another name for the remainder term.

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}$$

Taylor Series Polynomial

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$

Error Analysis of Taylor Series

for \sin & \cos

- Note that $f(x) = T_n(x) + R_n(x)$
- Absolute error is $|f(x) - T_n(x)| = |R_n(x)|$
- Absolute error depends on three factors:
 - $|x - x_0|^{n+1}$
 - $\frac{1}{(n+1)!}$
 - $|f^{(n+1)}(\xi)|$
- An error bound can be found by finding an upper bound on $|f^{(n+1)}(\xi)|$.

what is limit?
 $|f^{(n+1)}(x)| < 1$

Error Analysis for Exponential Example

```
# Cell 3
# error analysis of Taylor Series approximation of
e^8
# assumes cell two has been run
er=0.0*k
for i in np.nditer(k):
    er[i]=math.exp(8)-y[i]
fig, ax = plt.subplots()
ax.plot(k, er)
ax.set(xlabel='k', ylabel='error',
       title='Taylor Series Approximation')
plt.show()
```

$$n^{\text{th}} \text{ Taylor polynomial: } T_n(x) = f(x_0) + \sum_{j=1}^n \left(\frac{f^{(j)}(x_0)}{j!} (x - x_0)^j \right)$$

$$f(x) = \sin(x) \quad x_0 = 0$$

1st order $\rightarrow j=1$

$$\begin{aligned} T_1(x) &= f(x_0) + \sum_{j=1}^1 \left(\frac{f^{(j)}(x_0)}{1!} (x - x_0)^j \right) \\ &= \sin(0) + \frac{d}{dx} \underbrace{\sin(0)}_{1!} (x - 0)^1 \end{aligned}$$

$$\frac{d}{dx} \sin(0) = 0 \quad = 0 + 0(x - 0) = 0$$

$$T_2 \rightarrow j=2 \quad T_2(x) = f(x_0) + \sum_{j=1}^2 \left(\frac{f^{(j)}(x_0)}{j!} (x - x_0)^j \right)$$

Error for sine

```
# cell 4
# Demonstration of T1, T2 and T3 for sine
def T1(x):
    return x
def T2(x):
    return x - x**3/6.0
def T3(u):
    return T2(u)+u**5/120.0
x=np.linspace(-math.pi,math.pi,101)
t1=0.0*x
t2=0.0*x
t3=0.0*x
sin_x=0.0*x
for i in range(0,len(x)):
    t1[i]=T1(x[i])
    t2[i]=T2(x[i])
    t3[i]=T3(x[i])
    sin_x[i]=math.sin(x[i])
fig, ax = plt.subplots()
ax.plot(x, sin_x,label="sine (x )")
ax.plot(x,t1,label="T1")
ax.plot(x,t2,label="T2")
ax.plot(x,t3,label="T3")
ax.set(xlabel='x', ylabel='f(x )',
       title='Taylor Series Approximation of sine')
ax.legend()
plt.show()
```

Derivative Calculator

- Very helpful site
- Do not become dependent on it; it won't be available for the test
- [Derivative Calculator Website](#)

[1]: Cheney and Kincaid (2004), *Numerical Mathematics and Computing, 5th edition.*