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Matrix Algebra
and Random Vectors

2.1 INTRODUCTION

Wc saw in Chapter I thai miiliivariate data can be conveniently displayed as an
arrtiy of nimibcis. In general. :t rectangular tirray of numbers with, for insttince.
p rows and ii colutnns is called a iiiain.x of dimension p x n. The study of
muitivariate niclhods is greatly faciiitjited by the use of mtilrix algebra.

The matrix algebra results presented In this chapter will enable us to concisely
state statistical models. Moreover, the formal relations expressed in matrix lertns
are easily piogrammed on computers to allow (he routine calculalion of importtint
siatislictil qiianlitios,

Wc begin by introducing some very btisic concepts that arc essential to
both our geometrical interpretations and algebraic explanations of suh.sequent
statistical lechniqties. [f you have not been previously exposed to the rudiments
of matrix algebra, you may prefer to follou the brief retVesher in the ne.xi section
by the more detailed review provided in Supplement 2.A.

il!!?

2.2 SOME BASICS OF MATRIX AND VECTOR ALGEBRA

Vectors

An array x of // real numbers ,v,. .r. .v„ is called a ir<7<»r and it is wnttcii
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elements in a column of B. wc can form the matnx product AB. An element of
the new matrix AB is formed by taking the inner product of each row of A with
each column of B.

The imiin'x pwiliici AB is

A B = the (p X a) matrix whose entry in the ith row andjth column
rA.ou-) inner product of the /th row of A and /th column of B

or

(i.j) entry of AB = Oiyhy + -r • • • -f- ajyi, = ̂  a,,h,, (2-101
t - I

When = 4. we have four products to add for each entry in the matrii
AB. Thus

^«ii «i

A B = i^T a a,?

"/.I

/>,, ■ ■ ■

h;, ■ ■ ■

hn ■ ■ ■ K ■  ■ ■ hx„

/'l! ■ ■ ■

Column

i

= Row/ ■ ■ ■ + o,:Ai + a.^bx, + 0,A,)

Example 2.5

If

B =

then

_ 2

7

9

and C

31-21 -1- t- 11(71 ̂  2(9)

l(-2) + 5(7) 4-4(9)

-(: -:I

1
c ' ii

c A =|i i]

Chap. 2 Mairi* Algebra and Random Vectors

■( 2(.3) -fO(l) 2(-l) + 0{5) 2(2) -I- 0(4)
1(3) - 1(1) l(-l) - 1(5) 1(2) - 1(4) - [! -;]

Square matrices will be of special importance in our development of statistical
methods. A square matri.x is said to be synunciric if A - A' or ti„ = ci„ for all
i and /.
Example 2.6

The matrix

is symmetric: the matrix

IS not symmetric.

[; -3
3  6
4  -2

When two square matrices A and B are of the same dimension, both products
AB and B.A are defined, although ihoy need not be equal isee Supplement 2.Ai.
If we lei I denote the square matrix with ones on the diagonal and zeros elsewhere,
it follows from the definition of matrix multiplication that the (/. ,/) entry of AI
is a,, 0 - ■ ■ ■ + , I 0 • 1 u, < 0 ii,i ^ 0 =
ti„, so AI = A. Similarly. lA = A and

A  1 - A for any A (2-11)
I ■ II II •ii

1  A =
. • ii (1. <1

The matrix I acts like 1 in ordinary mulliplicalion (1 ■ « = « • I = o). so
it is called the identity matrix.

The fundamental scalar relation about the existence of an inverse number
<i ' such that a' 'a = an ' = 1. if a * 0. has the following matrix algebra
extensum. If there exists a matrix B such that

B  A = A B = 1
a . ii (1 • ii .(I Ii .11 ii • ii

then B is called the inverxe of A and is denoted by A V
The technical condition that a • inverse exists is thai the k columns a,. B;.

.  . . . Ill of .A are linearly independent. That is. the exisience of .A ' is equivalent
to

I',a, -t- c-a- 4- - - -I- ciai - () only if
(See Result 2A.9 in Supplement 2A.)
Example 2.7

For

A

(•| = = 0. = 0 (2-12)
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you may verify lha(

h -ill: i]
so

is A"'. We note that

,_.2)3^(.4M (-

(.8)? 4- {-.6)4 (

-.2 .4

.8 -.6

.2)2 + {.4)1 1 _ r

.8)2 + (-.6)lJ - [1  0

0  !

41^ 'Ml
1)

()

implies c, = r. = 0. so the columns of A are linearly independent. This
confirms the condition stated in <2-12). |

A method for computing an inverse, when it exists, is given in Supplement
2A. The routine, hut lengthy, calculations are usually relegated to a computer,
especially when the dimension is greater than three. Even so. you must be
forewarned that if the column sum in (2-12) is lu-arly 0. for some constants r,.
.... ft the computer may produce incorrect inverses due to extreme errors in
rounding. It is always good to check the products AA ' and A 'A for equality
with J when A*' is produced by a computer package. (See Exercise 2.10.)

Diagonal matrices have inverses that are easy to compute. For example,
- r-

flii 0 fl t) 0 fl 0 0 0

0 Qyj 0 0 0 0
flj;

0 0 0

0 0 035 0 0 has inverse 0 0
1

0 0

0 0 0 Ou 0 0 fl 0
flu

0

0 0 0 0 fl., 0 fl 0 0
1

055

if all the a„ i 0.

are the orl/m matrices with which wc shall become familiarare the orrbof-onal matracs. characterized by

QO' - Q'Q = I or Q' - Q ' (2-13)

ii'Plies thai ^ " '
are mutually pen)endir,,i.,r'*i^«r " , ' '' ^
the columns have the v ' '"'8onal). According to the condition Q'Q = '•

■'>«- '•♦•me propeny.ude our brief introduction to the elements of matrix algebra by

introducing <i concept fundamental to multivariatc statistical analysis. A square
matrix A is said to have an cif:viiv(iliic K. with corresponding cigt'nrer/or x ^
0. if

Ax = Ax (2-14)

Ordinarily, we normalize x so that it has length one so 1 = x'x. It is convenient
to denote normalized eigenvectors by c. and we do so in the sequel. Sparing
you the details of the derivation (see [I)), we stale the following basic result.

Let A be a {k x k) square symmetric matrix. Then A has k pairs of
cigenviilucs and eigenvectors:

A|.e, A;. Cj . . . A;. C; (2-15)
The eigenvectors can be chosen to satisfy I = e[e, = • • • = c^Ci and be
mutually perpendicular. The eigenvectors are unique unless two or more
eigenvalues arc equal.

Example 2.8
Let

Then, since
■[-

1

-5

-5

I

1  ■ 1  '

V2
!

= 6 Vi
I

.  V2.

Ci =

A| s 6 is an eigenvalue and

I

Vi
I

V2.
is its corresponding normalized eigenvector. You may wish to_show tjiat
a second eigenvalue, eigenvector pair is: A; = -4. c; = [l/V'2. l/\'2].

A method for calculating the A's and c's is described in Supplement 2A.
It is instructive to do a few sample calculations to understand the technique.
Wc usually rely on a computer when the dimension of the square matrix is
greater than two or three.

1 V

;
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£(X) =

EiX,.) ■ ■ ■ UX,..)
kU\,) tJA':;! ■ ■ • /:(.V,„)

^(A;, I £(A',,.i - • LiX,.,,)^

where, for each elemcni of ihe inalrix-

(2-23)

tlA'J =
1 xj' ix )dx is a continuous rantUim viiriablc

with probability densilv function/;^<,r,)
2  if A',; is a discrete randortt variable

with probability function />„{.*„)
Rxample 2.11

Suppose p = 2 and n = I and consider the random vector X' = fA" A'!
Let the discrete random variable A', have the followinit probability function:

'  -1 0 .1
P,U,)

Then£(A',l = 2! > = (-!)(.3>
..3 .4

(0)1.3) t|)(.4) = .1.

function'"""'''' """
0  I

Then EtX,) - = (0)(.8) + (1m,2) = .2.
Thus

aX) =
ElW [■]

follow direcilv from ihe^ tlf of sums and products tif matrices
«>.<= univana proven c t" *"" matrix and= .mr ' ^ T,) = EtX,) ^ £(»-,) and
be eonlittntnHn I.l^i """

ax + V) /:,x, , ,.,Y)
aAXB) = AaX)B (2-24)

"pcciarbn Oi<r dive "" inR-rprcIarbn «f'!«"  ""an ,is p,,r„tuli.r pnnu.tilv on tta- pmpenicsrf

P3„0o.vec,o.

2.6 MEAN VECTORS AND COVARIANCE MATRICES

Suppose X = {A,} is a {p x |) random ma(rix..thal is. a random vector. Rach
clement ol X is a random variable with its own marginal probability distrihiiiion
(see Rxample 2.1 1). The mar)tin:il means, p,. and variances, rr;, are delined as
p, = /:(.\,) and ir; - E{\_ - j ^ |_ s /?. respectively. Specifically.

M. =

j  .v./l.v, )</.v,

I ;>ll <,

il A', is a continuous random variable with
probability density function /^(.«,)
if A", is a discrete random variable with
probability function p,(.v,)

"■j* =
/: (.V, - M.)Vi( v,) d.x, if A', is a continiKuis nindom variable with

prob.ibility density funclion/(.T,)

2 (•*, - if A', is a discrete random variable
with probability function p,(.v,) (2-25)

Z Z (-ri - M.KAc -

It will be convenient in later sections to denote the marginal variances by <t„
rather than the more traditional <r: and. consequently, wc shall adopt this notation.

The behavior of any pair of random variables, such as X, and .Vj. is described
by their joint probability function and a measure of the linear association between
them is provided by the covariance fr,i. where

EiX, - p,HXt - Pi)
if A',. A'i are
continuous random
variables with the
joint density
function ./id.r,. .xj
if .V,. -X; arc
discrete random
variables xxiih the
joint probability
function .v,)

i2-26l

and p, and Pi. i. k = 1.2 p. are the marginal means. When i = k. the
eovarianee becomes the marginal varitince.

More generally, the colleelive behavior of the p random varitibles A',. .V;.
or. eqiiivalently. the random vector = |.V|. A'; V,,] is described

by a joint probabililx dcnsitx function /(.v,. .t^ .v,,) = fix). .As we have
already noted in this book, /ix) will often be the multivariatc normal density
function (see Chapter 4).

If the joint probability /'[,V, ti .v, and A'l s .vj can be written as the product
xtf the eoricsponding marginal probabiiillcs so that

Pj-X, < .V, and A\ - .vj = P\X, s .vj /'[A", ^ .vj (2-27)
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for all pairs of values .r;, .r,. then A", and A'j arc said to l>c independtia
When /V, and ,\\ arc continuous random variables w ith joint dcosity/,(j..
marginal densities/(.Vy) and/d-fi). the independence condition becomes

/xt.V,. .Tjl =

for all pairs (.r,. .ij).
The p continuous nmdom variables A',. A": A',, arc muiiKilly stiuixUcdk

indcpciulcni if their joint density factors as

/i: Ai.-r: ivl = • • -/..(a,,! (2-28)
for all p-luples Ij:,. .is

Staiisiical independence has an important implication for covariance Tht
factorization in (2-28) implies Cov(A",, A'i> = 0. Thus

I = CovtXt =
(2..11)

Cov(A',.AfJ = 0 ifAf,andA'i are independent. (2-29)

Seneral. There are situations when
toviA,. Ad = 0 and A, and ,V, are not indepcndeni (see |2|).

The means and covarianccs of the ip v i, r.xmiom vector X can be se
out as matrices. The espeeled value of each element is contained in the vect«
of means ji /:(.\) and the/. variances n-„ and the/.( p - n/2 distinct covarianeei
m- contained in the symmetric variance-covariance matrix 1 =c(X - /iiix -.p). Specifically.

/AX) =

and

"m,"
aA":)

_

M:

.f^r.

(2-301

2 = aX-;i)(X-p)-s£-

X-p,
A"; - p.

\x, - p,.X: - P; X,. -

L'w.-Ma-,-;.,, a,v„

tA', - p, ){X,. - Pf)
(A'; - /X;»A",, - Pf)

tAV - pX

tHX,-p,){X,-p,)
KiX, -p^){X,.-p,\

/aa; - pX

Kxiimpie 2.12

I'ind the covariance malri.x for the two random variables A', and A'.. intnxJuced
III r-.\aniple 2.11 when their joint probability function. .v-) is represented
by the entries in the body of the following table.

0 p,l.v, 1

~ 1 .24 .06 .3

0 .16 .14 ..3
1 .40 .00 .4

pa.v.i .8 ■y 1

We have already shown that m. = E(X^) = .1 and m: = £(AM == .2 (see
E.xample 2. 11). In addition
<r,, = £(Aj - Ml)" = S )V| - . i )-Mi(.v,)

..I1 1,

= t-l - .l)-(.3) (0 - .!)=(..3) -t- (I - .|)-(.4l = .69
O-;; = fcVA": - M;)' = 2 '•*: ^ •2)*p.(.V;)

alt i;

= (0 - .2)A.8) -I- (I - .2)-(.2)
= .16

<t,2 = f(A| - MiMA'; - M:) = ^ (.Vi - - .2)pi;(.r|. .r.)
aJt T^r« <ii. c;i

= (- I - .IHO - .2)(.24) -I- (- I - .IHI - .2)(.06)

+ • • • + {I - .l)(l -.2)(.00) ^ -.08
ir., = fc"(.V: - p,)iX, - p,) =• BXt - Mi MA": - p;) = «r,. = -.08
Consequently, with X' = |A',. yV.j.

and

i; = B\ - pnx - pi- = ifl'J/ ~ X "[(A: - M;)IA| - Mi' IAj - m;)" J
_ fi'tAi - Ml)" t"<A', - Mi)('V; - M:)l

[/AA'j - M:)(A'i - Ml' E(Xi - M:)" J

L"":i "".'jJ [-.08 .16
Sec. 2.6 Mean Vectors and Covariance Matrices 5S
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Exnmples of matrices arc
■-7 2"

0  I
3 4

A = •■[; -! 4 I =
0 0

1  0
0  1

I =
I

.7
-.3

-.3
I
K

E = k,|

In our work, the matrix clemetits will he real numbers or functions taking oo
values in the real numbers.

Dcnnition 2A.I4. The dimviixion (ahbrcviaied Jim) of an m x A ntairij
is the ordered pair (m. A); m is the row dimension and k is the column dimensioa.
The dimension of a matrix is frequently indicated in parentheses below the leiiei
representing the matrix. Thus the m < k matrix A is denoted by A . In the

Iff » ii

examples above the dimension of the matrix i is 3 x 3 and this information
can be conveyed by writing 1 .

(1 -u

An m X k matrix, call it A. of arbitrary constants can be written

A

At:
rt"

"u

flml

or more compactly as ^A = {«„}. where the inde.\ ( refers to the row and the
index j refers to the column.

An ;m X I matrix is referred to as u csilumn vector. A 1 x A matrix it
re terred to ns a row wrtor. Since matrices can be considered as vectors side
by Side, it is natural to define multiplication by a scalar and the addition of l«o
matrices with the same dimensions.

(H-rmition 2A,I5. Two matrices A = {(i„( and
be wrilicn A = B. if«„ = h„.i"l"] - ^
IS. two matrices are equal it':

(a) Phcir dimensionality is the same.
(b) Every corresponding element is the same.

n;^'Ticcs A and B both he of

»■ that the arbitrary element of C. c,. is given by
1.2 A

B  - {/>,;} arc said to

= 1.2 A. Bs'

. m.

'2 Chap. 2 Mairix Algebra and Random Vectors

Note that the addition ol matrices is defined only for matrices of the same
dimension.

Tor example
[3 : . [3 b 7] _
[4 I lj 2 -I Oj

A

b 7

-I 0

B

6 8 10
6 0 I

C

Dcnnition 2.A.17 (Scalar .Multiplicatinnl. Let c be an arbitrary scalar and
A  = {«„). Then t A = A<- = B = {/>„}. where h„ = ca,. = <J„r. i ~

trt'il rrn'i)

1.2 m.j = 1.2 A.
Multiplication of a matrix by a scalar produces a new matrix whose elements

are the elements of the original matrix, aic/i multiplied by the scalar.

For example, if c = 2.
"3 -4" 3  -4' ■ft -«■
2  6 = 2  6 T —

~
4  12

0  5 0  5 0  10

rA Ar" B

Definition 2A.I8 (Matrix Subtraction). Let A - {(/„} and B <= {&„}
|»r - Ai Im *

be two matrices of equal dimension. Then the difference between A and B.
written A - B. is an m x A matrix C = given by

C = A- B = A + (-nB

That is. c„ - a,, + {-l)h„ = <?;, - ;' = I. 2 m.j = 1.2 A.

Definition 2.A.19. Consider (he m x A matrix A with arbitrary elements
a„. i = 1.2 m.j = 1.2 A. The transpose of the matrix A. denoted
by A", is the A «• m matrix with elements u,,. / = 1.2 A. / = 1.2
ni. That is. the transpose of the matrix A is obtained from A by interchanging
the rows and columns.

As an example, if

A =
I  3

-4 ft
then = I  -4

3  ft

Resnll 2A.4. For all matrices A. B. and C (of e<iaal Jimeiisioii) and scaiai's
r and </. the following hold:

(ai (A + B) C = A ---
(bt A B = B * A
(cl ((A + B) = tA <B
(d) U + ih\ == ( A * (/A
(c) (A + B)' = A' + B'

(B + C)

(That is. the transpose of the sum is equal to
the sum of the transposes.)

Supp. 2A Vectors and Matrices: Basic Concepts 73
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Also

bu(

l-i®
2. Lei 0 denote the zero matrix, ihat is, the matrix with zero for every elemtttt.

In the algebra of real numbers, if Ihe product of two numbers, ah. is zeni,
then rt = 0 or /> = 0. In matrix algebra, however. Ihe product of i*»
nonzero matrices may be the zero matrix. Hence.

AB = 0
rit . fiHn >11 Oft • li

does not imply that A = 0 or B = 0. For example.

4'

;;! J h
It is true, however, that if either A II or B = 0 . tha

"•Fii in-li <n'l)

A  B = 0 .
lOIFIII Or-ll •FR>i|

Deflnilioit 2A.24. The lieierminant of the square k * k matiix A =
denoted by [Al. is the scalar

lAj = «„ ifA = !
1

lA) = 2 «iMj(-i)'" irA>i
j- 1

where A,, is the - I) x (A - ]| matrix obtained by deleting the firstti"

andythcolumnof A. Also. [A! = V «„|A„|(-ir' usins the »th row in pbce
of Ihe first row. , ,

Examples of determinants (evaluated usirtg Delinition 2A.24) are
I  3

In gcnerdl.

6 4

«ii «i:

1  6

4 5

-7 I

= l|4l(-|)- + 3|6H-1>' = l(4> + 3IA)(-1» = -14

=  - |)' =

= 3
4  "i . I? s

-7 •; i-ii'
- 3(39) - |(-3) + fi(-.57) _ ^222

Chap. 2 Matrix Algebra and Random Vectors

7  4

2  -7
(-1)'

I  0 0

0  I 0

0 0 i

= I
I  0

0  I
(-11- + 0

0 Oj
0  1 1

(-1)' + 0
(I I

0 0
(-1)'

= MI) = I

is Ihe k X k identity matrix.

"tl "i:

= rt|,

<'n "n

= I.

I-I)- +

+ rt,.
":t (-1)^ = rt|,rt:;ri,, rti;«>,fl.,| - rt,,rt-.;rt,t

The determinant of any .3x3 matrix can be computed by .summing ihe products
ol elements along the .solid lines and subtracting the products along the dashed
lines in the diagram below. This procedure is iioi valid for matrices of higher
dimension but. in general. Definition 2A.24 can be employed to evaluate these
delcrniinants.

We want to state a result thai describes some properties of the determinant.
However, we must first introduce some notions related to matrix inverses.

Definition 2A.25. The nut- rank of a matrix is the maximum number of

linearly independent rows considered as \cctors (that is. row vectors). The
column rank of a matrix is the rank of its set of columns considered as vectors.

For example, let the matrix .A be

^■|
A = ' 2  5 - I

I) I -I

The rows of A written as vectors were shown to be linearly dependent after
Definition 2.-\.(>. Note that the column rank of A is also 2. since

Supp. 2A Vectors and Matrices: Basic Concepts 77



7
8

1
1

1
0

2
+

5
+

-
 1

1)

0
,

I.
-
 1

0

bu
t 
co
lu
mn
s 

I a
nd

 2
 a
rc

 l
in
ea
rl
y 
in

de
pe

nd
en

t.
 T

hi
s 

is
 n
o 

co
in
ci
de
nc
e,
 as

ikt
ro
ll
ow
in
g 

re
su

lt
 i
nd

ic
at

es
.

Re
su

lt
 2
A.

6.
 
Th
e 
ro
w 

ra
nk

 a
nd
 t
he
 c
ol
um
n 
ra
nk
 o

J"
 a 

ma
tr

ix
 a
re
 eq

ual
, 
|

Th
us

 t
he
 r
an

k 
of
 a
 m
a
i
m
 i

s 
ci

th
er

 t
he

 r
ow
 r
an
k 
or

 t
he

 c
ol
um
n 

ra
nk

De
fi

ni
ti

on
 2
A.

26
. 

A 
sq

ua
re

 m
ii
tr
ix
 
A 

is
 i
ii
ms
ii
in
uh
r 

if
 
A 

x 
= 
|

im
pl
ie
s 

X 
=
 
0
 .
 I

f 
a 

ma
tr

ix
 f

ai
ls

 t
o 
be

 n
on

si
ng

ii
la

r.
 i

t 
is

 c
al

le
d 
si

nu
ia

H
-
l
l
 

(
i
.
I
I
 

*
 

•

Eq
ui

va
le

nt
ly

. a
 s
qu

ar
e 
ma
tr
ix
 i

s 
no
ns
in
gu
la
r 

if
 it

s 
ra
nk
 i

s 
eq
ua
l 
to

 t
he
 n
um
bs

of
 r
ow
s 
(o
r 
co
lu
mn
s)
,

No
te
 th

at
 A
x 
=
 .r

.a,
 -

s .
T^a

.. 
. 
wh
er
e 

a,
 is

 t
he

 it
h c

ol
un
uu
f

A.
 so

 th
at
 th

e c
on
di
ti
on
 o
f n

on
si
ng
ul
ar
it
y 

Is
 ju

st
 t
he

 s
ta

te
me

nt
 t
ha
t 
th

e c
oI

ui
b

of
 A
 a
re
 l
in
ea
rl
y 
in

de
pe

nd
en

t.

Re
su

lt
 2
A.
7.
 

Le
t 
A 

be
 a
 n
on

si
ng

it
ia

r 
sq

ua
re

 m
at
ri
x 
of
 d
im
 k
 x

 k
. 

Ili
a

th
er
e 

is 
a 
un
iq
ue
 k
 x

 k
 m

at
ri
x 
B
 s
uc

h 
th
at

A
B
 =
 
B
A
 =
 I

wh
er

e 1
 is

 th
e i

 v
 k

 i
de
nt
it
y 
ma

tr
ix

. 
|

Def
ini

tio
n 2

A.
27
. 

Th
e 
B 

su
ch

 lh
.n

 A
B 
-
 B
A 
- 

I i
s c

al
le

d 
th

e i
nv
en
t i

A 
an
d 

rs 
de
no
te
d 
by

 A
 

In
 fa

ct
, i

f B
A 
= 

1 .
r 
AB
 ̂
 I

. t
he

n 
B 
=

oo
th
 p

ro
du

ct
s 
mu
st
 e
qu
al
 I
,

Fo
r 
ex

am
pl

e;

s
i
n
c
e

2
 }

I
 5

h
a
s
 
A

■[-
: 1

]
: 3

-i 
1] ■

 [-1
 -!

l(;
;] ■ 

(t
 0

0
■J

Re
su

lt 
2A

.8
.

<a) 
The

 in
ver

se 
of 

the
 2 

x 
2 m

atr
ix

A
 

=

•s 
giv

en
 b

y

II

<»
:i 

o
..

A
' =

 -L
r 

-«
,.l Oii

J

P 2
 

Mat
rix 

Alg
ebr

a a
nd 

Ran
dom

 Ve
ctor

s

(b
> 

Th
e 

in
ve

rs
e 

of
 a

 ?
 

x 
3 

m
at

rix

A
 

=

is
 g

iv
en

 h
>

r'
li 

/I
n

":
i 

"m
//»

! 
//»

;

A
 

' 
=

1A
|

"z
:

<h
z 

a
„

i"i
: 

«n
th

: 
ih

i
"
i:
 

O
n

|/7
- 

(hx
th

, 
th

\
j"ii

«
n

 
"
n

«M
 

th
y

t"u
":

i 
":

.i|

i"
:i

«
ii 

«
i:

fl
u 

fl
i:

j/ii
i 

</,
:

//
ii
 

tlx
:

":
i

In 
bo

th
 c

as
es

 a
bo

ve
, 

it 
is 

cle
ar

 th
at

 |A
| 

^ 
0 

if 
the

 in
ve

rs
e 

is 
to

 e
xis

t,
(c)

 I
n 

ge
ne

ra
l. 

A 
' h

as
./,

 /
th

 e
nt

ry
 [

|.A
„|/

|A
|](

 -
 I)

''
wh

er
e 

A,
 i

s 
the

 m
at

rix
ob

ta
in

ed
 f

ro
m

 A
 b

y 
de

le
tin

g 
th

e 
I'th

 r
ow

 a
nd

 jt
h 

co
lu

m
n.

 
■

Re
su

lt 
2A

.y
. 

Fo
r 

a 
sq

ua
ie 

m
at

rix
 A

 o
f 

dim
 k

 
x 

k. 
th

e 
fo

llo
wi

ng
 a

rc
eq

ui
va

le
nt

:

la
) 

A
=

 0 
im

pl
ie

s 
K 

- 
I) 

(,\
 is

 n
on

sin
gu

la
r).

It
--

 I
I 

<(
 ■

 
i.
 

i;
 ■

 
II

(b
) 

iA
[ 

» 
0,

(c
) 

T
he

re
 e

xi
st

s 
a 

m
at

rix
 A

"'
 s

uc
h 

th
at

 A
A

'A
 

=
 

I 
.

a
 
"
ii

Re
su

lt 
2.

\.I
0.

 
Le

t A
 a

nd
 B

 b
e 

sq
ua

re
 m

at
ric

es
 o

f t
he

 s
am

e 
di

m
en

si
on

 a
nd

let
 t

he
 i

nd
ica

te
d 

in
ve

rs
es

 e
xis

t. 
Th

en
 t

he
 f

ol
lo

w
in

g 
ho

ld
;

(a
) 

(A
 

')'
 

= 
(A

')"
'

(h
i 

(A
D)

 
' 

= 
B 

'A
 

' 
■

Th
e 

de
te

rm
in

an
t 

ha
s 

th
e 

fo
llo

w 
ing

 p
ro

pe
rti

es
.

Re
su

lt 
2.

A.
I1

. 
Le

t 
.4 

an
d 

B 
be

 k
 

y. 
k 

sq
ua

re
 m

at
ric

es
.

(a
) 

;A
! 

= 
JA

'I
lb

) 
If 

ea
ch

 c
le

m
en

t 
of

 a
 r

ow
 (

co
lu

m
n)

 o
f ,

A 
is 

ze
ro

, 
th

en
 >

A| 
= 

0
(c

) 
If
 a

ny
 t

w
o 

ro
w

s 
(c

ol
um

ns
) 

of
 A

 a
re

 i
de

nt
ic

al
, 

th
en

 |
.A

| 
= 

I).
(d

) 
If 

.A 
is 

no
ns

in
gu

la
r. 

th
en

 lA
| 

= 
1/

|A
 

'|: 
th

at
 is

. 
1A

]|A
 

'| 
= 

I,
(e

) 
|.A

B|
 
- 

|A
||B

|
111

 I
cA

j 
= 

f''|
A|

. 
wh

er
e 

t 
is 

a 
sc

al
ar

. 
■

Yo
u 

ar
e 

rc
fe

iT
cd

 to
 [.

^1 
fo

r 
pr

oo
fs

 o
f p

an
s 

of
 R

es
ul

ts
 2

A.
y 

an
d 

2.A
. 1

1,
 

So
m

e
of

 th
os

e 
pr

oo
fs

 a
re

 r
at

he
r 

co
m

pl
ex

 a
nd

 b
ey

on
d 

th
e 

sc
op

e 
of

 th
is 

bo
ok

.

Su
pp

. 
2A

 
V

ec
to

rs
 a

nd
 M

at
ric

es
: 

Ba
si

c 
C

on
ce

pt
s

79



80

Dcfinilion 2A.28. Let A = {«,,} be a A ^ k square matrix. The irat,
of the matrix A. written ir(A). is the sum of the diagonal clcment.s: lhai b,

I

tr(A) = 2
I't

Result 2A.12. Let A and R be k y k matrices and < he a scalar.

(a) tr(cA) = r tr(A)

(b) tr(A ± B) = tr(A) = tilBI

(c) tr(AB) = tr(BA)

(d) tr(B"'AB) = tr<A)
I  I

(e) trtAA') = S S I

Definition 2A.29. A .square matrix A is said to be orthogonal if itsrwj.
considered as vectors, are nnituallv perpendicular and have unit lengths-tin
is. AA' = I.

Result 2A.I3. A matrix A is orthogonal if and only if .A ' = A'. Fora
onhogonal matrix. AA' = A'.A = I. so the columns arc also miituallv perpendicufei
and have unit lengths. ' |

An e.xample of an orthogonal matrix is

'-i i

A- ^
I  i
I  k

Clearly A = A', so AA' = A'A = AA. We verify that AA - I - AA' = .VA.

1
2 r

i i
-i i

i -i

i  \
i

i

i
i  -i i
i  1 -i.
A

{  } i

i  -i i J
i  i -i 1
^  i k -I

A  = I
and A must he an orthogonal matrix.

:icenvL-mr 'enns of quantities culled eigcnvdue

■| 0 0 (»"
0 0 0

0 0 0

0 0 I) 1

so A' = A
Squar

and eigenvectors,

'deniiiv TheMh *' ^ ^ ^4uarc matrix and I be the AlA - arl^dl . ^.'isfying the polynomial equalic
The equaiioi) l,\ - kii lor chnrat irrixlti- roitixi »if a matfixA
'ifidiiDii. '^"m^tion of A) is called the c/iurrtrtrhi/if

Chap. 2 Matrix Algebra and Random Vectors

For example, let

Then

|A - XII =

"■[: ;]
;] -.(; :ji ■_ Il-X = (I - AK3 - X) = 00

I  .3J "[() Ijj I I 3-X
implies there are two roots. X| = 1 and X; = 3. The eigenvalues of .A are 3
and 1. Let

' 13 -4 2'
A = -4 13 -2

2 -2 10

Then the equation
, 13 - X

lA - XII - ' «  + 36X- - 405X ^ 1458 = 0
-4

-4 13 - X -2
2  -2 10 - X

has three roots: X, = 9. X; = 9. and x, = 18; that is. 9. 9. and 18 are the
eigenvalues of A.

Dcfinilion 2A.3I. Let A be a matrix of dim k x k and let X be an eigenvalue
of A. If .X i.s a nonzero vector ( x « 0 ) such that

n «II n> II (1-11

Ax = Xx

then X is said to be an eigenvector icharacterislic vector) of the matrix A associated
with the eigenvalue X.

.An equivalent condition for X to be a solution of the eigenvalue-eigenvector
equation is |A - Xlj = 0. This follow's since the statement that Ax = Xx for
some X and x ^ 0 implies

0 = (A - XDx = .T|C01|(A - XI) .ViCol.lA - XD

That is. the columns of A - XI are linearly dependent so. by Result 2.\.9(b).
|A - Xlj = 0 as asserted. Following Definition 2.A.30. we have shown that the
eiuenvaliics of

are X, = 1 and X; = 3. The eigenvectors associated with these eigenvalues can
be determined by solving the following equations:

= [i "]
iciors asso

ing cqiiatii

[! ;l[;:l ■ isl
.Ax = X,x

Ax - X;X
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From the first expression.

.r, = X,

.fi + 3.»'j =

or

Ji = -2.r2

There are many solutions for .v, and .r>.
Setting .r. = I (arbitrarily) gives .v, = -2andlienfe

"It
isancigcnveciorcorrespondingio the eigenvalue I. f-"rom the second expressijt

-''i = 3a-|

Ji -r 3,r; = 3x2
implies A'l = 0 and .v; = I (arbitrarlK). and hence

"ClIS an eigenvector corresponding to the eigenvalue 3 li is usinl nraeiir,»
dete^in^n eigenvec.nr so that it has length one. That if L fx S
t - x/Vx X as the eigenvector corresponding to X. K..r example, (he cigcnve^
lor A = I IS |-2,/\/s. l/\ 5[',

. is whcr'rr'rr"-
matrix, • '' A is a A- * A symmetre

Nol. Ih;,, a ,„adn„ic form can be en,ten as yi„ = V ̂  fa
example: ■ i ' '

x,)f'
I  I - x; 2

•  3 0] .r,
^ X: J,) 3  -1 -2

» - 2 2

.r,.r2 v;

= *i -■ fxTiX, - .v; - 4.r:.i, + 24

exercises

I-CI x' = (
111 Criiph
fb> I- I '

of .V on "■ "" between * and y. and (iiil llic projectw
U' U.ph the ov„ vectors, ■ "

Vectors

2.2

(c) Since .t = 3 and y - I. graph |5 - .3. 1 - 3. j - 3) = |2. -2. Oj and
[-1 - I. 3 - J. I - 1] = 1-2. 2. o|.

Given the matrices

-3
_ 1

0
•xnd C - -4

perform the indicated miiltipliealions
(a) .S\
(h) HA

Id A lt'
(dl C'B
Id Is AB defined?

2.3. Verify the following properties of transpose when

'■[M]. ■
In) lA')' A
(hi (C'l ' = (C '»•
(Cl (AB)' = B A'
(dl Prove Ic) for general A and B

1  4 2
0 3 .  and C = I  4

3  2

2.4

2,5.

2.6,

When A ' and B ' exist, prove each of the following
(«) (A'l ' = (A 'I'
llu (AB) ' = B 'A '

mint: Pan a can be proved by noting thai AA ' = I. I = I . and (AA i --
(A ')'A', Part b follows from (B 'A 'lAB ^ B '(A 'A)B = B 'B = I,)
Check that

IS an onhogonal malrix.
Let

1]

2.8

(a) Is A symmetric?
(h) Show (hat A is positive definite.
Let A be as given in Exercise 2,6,
(a) Determine ihe eigenvalues and eigenveciors of A,
(b) Write Ihe spectral decomposition of \.
(d Find A ',
(d) Find (he eigcnviilues and cigcnveclors of A
Given the matrix

A =

find the eigenvniiics x, and X- ami the associated normalized eigenvectors e, ami
P;, Dcicrmine Ihe spectral decomposition (2-16) of A.
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