Skip to content

MANE 3351

Lecture 17

Classroom Management

Agenda

  • Numerical Differentiation
  • Homework 4 (due 10/29/2025)
  • Homework 5 (due November 3 - no late work)
  • Lab 7 after lecture (due 11/3/2025)

Resources

Handouts

Calendar

Week Monday Lecture Wednesday Lecture
9 10/27: Gaussian Quadrature 10/29: Numerical Differentiation (not on Test 2)
10 11/3: Linear Algebra 11/5: Test 2 (Root Finding and Numerical Integration)

Test 2

  • Content
  • Lectures 8 - 16 (9/29 - 10/27)
  • Homeworks 3 - 5
  • You are allowed one 4 inch by 6 inch notecard
  • Calculator needed
  • Previous test provided above

Lecture Topics

  • Lecture 8 - Root Finding, Bisection lecture
  • Lecture 9 - Bisection Method Error Analysis, False Position Method
  • Lecture 10 - No lecture - Test 1
  • Lecture 11 - Newton's Method
  • Lecture 12 - Secant Method
  • Lecture 13 - Numerical Integration, Trapezoid Rule
  • Lecture 14 - Simpson's 1/3 Rule, Simpson's 3/8 Rule
  • Lecture 15 - Romberg Integration
  • Lecture 16 - Gaussian Integration

Derivatives

You are responsible for calculating the following derivatives:

  • Polynomial: \(ax^3+bx^2+cx+d\) (arbitrary power)
  • \(a\sin(bx)\)
  • \(a\cos(bx)\)
  • \(ae^{bx}\)
  • \(a\ln(bx)\)
  • Product Rule: \(\frac{d}{dx}f(x)g(x)=f(x)g^\prime(x)+f^\prime(x)g(x)\)

Lecture 17

The topic for Lecture 17 is numerical differentiation. This topic will NOT be on Test 2 and the material is taken from the Chapra and Canale textbook


Forward finite-divided-difference formulas

Figure 23.1


Backward finite-divided-difference formulas

Figure 23.2


Centered finite-divided-difference formulas

Figure 23.3


Example Problem

Example 23.1