MANE 3351
Lecture 7
Classroom Management
Agenda
- Taylor Series Expansion
- Homework 2
- Schedule
- Lab session at 9:30
Resources
Handouts
Assignments
- Homework 1 (assigned 9/22/2025, due 9/29/2025 (before 11:59 PM)
- Homework 2 (assigned 9/24/2025, due 10/1/2025 (before 9:30 AM - no late submissions)
- Lab 3 (assigned 9/24/2025, due 10/1/2025 (before 9:30 AM))
- Read textbook pages 1 - 16
Schedule
| Lecture/Lab | Date | Topic |
|---|---|---|
| 7 | 9/24 | Taylor Series, Homework 2 (due 10/1 - no late work), Lab 3 (due 10/1) |
| 8 | 9/29 | Roots of Equations, bisection method (not on Test 1) |
| 9 | 10/1 | Bisection Method Error Analysis, False Position (not on Test 1) |
| 10 | 10/6 | Test 1 (lectures 1-7) |
Lecture Content
- Taylor Series Expansion
Taylor Series
Introduction to Taylor Series
Cheney and Kincaid [^1] provide some commonly used Taylor series.

Example
To find \(e^8\), recall \(e^x=\sum_{k=0}^\infty\frac{x^k}{k!}\)
- \(e^8=1\)
- \(e^8=1+x=1+8\)
- \(e^8=1+8+\frac{x^2}{2!}=1+8+\frac{64}{2}\)
- \(e^8=1+8+\frac{64}{2}+\frac{x^3}{3!}=1+8+\frac{64}{2}+\frac{512}{6}\)
Python Code for Jupyter Notebook
import math
import numpy as np
import matplotlib.pyplot as plt
def eTaylor(x,k):
y=0.0
for i in range(k):
#print(i)
y=y+(x**i)/math.factorial(i)
#print("i=",i," y=",y," i!= ",math.factorial(i)," x^i=",x**i)
return y
k=np.arange(21)
print(k)
print(k[0])
y=0.0*k
for i in np.nditer(k):
#print(i)
y[i]=eTaylor(8,i)
#print(y)
#plotting code
fig, ax = plt.subplots()
ax.plot(k, y)
ax.set(xlabel='k', ylabel='e^8(k)',
title='Taylor Series Approximation')
plt.show()
Taylor Series Expansion about a Point

Source: textbook, page 14
Error Analysis of Taylor Series
- Note that \(f(x)=T_n(x)+R_n(x)\)
- Absolute error is \(|f(x)-T_n(x)|=|R_n(x)|\)
- Absolute error depends on three factors:
- \(|x-x_0|^{n+1}\)
- \(\frac{1}{(n+1)!}\)
- \(|f^{(n+1)}(\xi)|\)
- An error bound can be found by finding an upper bound on \(|f^{(n+1)}(\xi)|\).
Error Analysis for Exponential Example
# Cell 3
# error analysis of Taylor Series approximation of e^8
# assumes cell two has been run
er=0.0*k
for i in np.nditer(k):
er[i]=math.exp(8)-y[i]
fig, ax = plt.subplots()
ax.plot(k, er)
ax.set(xlabel='k', ylabel='error',
title='Taylor Series Approximation')
plt.show()
Error for sine
# cell 4
# Demonstration of T1, T2 and T3 for sine
def T1(x):
return x
def T2(x):
return x - x**3/6.0
def T3(u):
return T2(u)+u**5/120.0
x=np.linspace(-math.pi,math.pi,101)
t1=0.0*x
t2=0.0*x
t3=0.0*x
sin_x=0.0*x
for i in range(0,len(x)):
t1[i]=T1(x[i])
t2[i]=T2(x[i])
t3[i]=T3(x[i])
sin_x[i]=math.sin(x[i])
fig, ax = plt.subplots()
ax.plot(x, sin_x,label="sine(x)")
ax.plot(x,t1,label="T1")
ax.plot(x,t2,label="T2")
ax.plot(x,t3,label="T3")
ax.set(xlabel='x', ylabel='f(x)',
title='Taylor Series Approximation of sine')
ax.legend()
plt.show()
Derivative Calculator
- Very helpful site
- Do not become dependent on it; it won't be available for the test
- Derivative Calculator Website
[1]: Cheney and Kincaid (2004), Numerical Mathematics and Computing, 5th edition.