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MANE 3351 Lecture 17

Classroom Management

Agenda

@ Numerical Differentiation
@ TJest 2
@ Lab Assignment 8
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MANE 3351 Resources

Handouts

@ Lecture 17 slides
@ Lecture 17 slides marked
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Calendar
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Lecture/Lab Date Topic
10/28 Numerical Differentiation (not on Test 2) Lab 8
10/30 Linear Algebra, part 2 (not on Test 2) Lab 8
11/4 Linear Algebra, part 1 (not on Test 2) Lab 9
11/6 Test 2 (Root Finding and Numerical Integration) No La
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Resources
Test 2

@ Content
o Lectures 8 - 16 (9/23 - 10/23)
e Homeworks 3 -5

@ You are allowed one 4 inch by 6 inch notecard
@ Calculator needed
@ Previous test andstrandedt provided
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MANE 3351 Resources

Lecture Topics

Lecture 8 - Root Finding, Bisection lecture

Lecture 9O - Bisection Method Error Analysis, False Position Method
Lecture 10 - No lecture - Test 1

Lecture 11 - Newton's Method

Lecture 12 - Secant Method

Lecture 13 - Numerical Integration, Trapezoid Rule

Lecture 14 - Simpson's 1/3 Rule, Simpson’s 3/8 Rule

Lecture 15 - Romberg Integration

Lecture 16 - Gaussian Integration

e 015

day 17 lecture Page 10



MANE 3351 Resources

Derivatives

You are responsible for calculating the following derivatives:

Polynomial: ax3 + bx? + cx + d (arbitrary power)
asin(bx)

a cos(bx)

aebx

aln(bx)

Product Rule: £f(x)g(x) = f(x)g’(x) + f'(x)g(x)
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Resources
Lecture 17

The topic for Lecture 17 is numerical differentiation. This topic will NOT
be on Test 2 and the material is taken from the Chapra and Canale textbook
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MANE 3351 Resources

Forward finite-divided-difference formulas

FIGURE

23.1

Forward finite-divided-difference formulas: two versions are presented for each derivative. The
latter version incorporates more ferms of the Taylor series expansion and is, consequently, more

accurale

First Derivative

flx) =

/U/S‘Q 7[ i

—f{x:e2) + 4flx1) — 3fx

Second Derivative
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Fourth Derivative
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MANE 3351 Resources

Backward finite-divided-difference formulas

T
rsions are presented for eact

Figure 2: Figure 23.2 “w += QM )[60){
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MANE 3351 Resources

Centered finite-divided-difference formulas

FIGURE 23.3 First Derivotive
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Figure 3: Figure 23.3
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MANE 3351 Resources

Example Problem

EXAMPLE 23.1

il

High-Accuracy Differentiation Formulas
Problem Statement. Recall that in Example 4.4 we estimated the derivative of
fix) = —0.1x* — 0.15x — 0.5 — 0.25x + 1.2

rat x = 0.5 using finite divided differences and a step size of h = 0.25,

Forward Backward Centered
ofh) Oth) O(h?)
Estimate -1.155 0714 ~0934
& (%) ~26.5 21.7 -2.4

where the errors were computed on the basis of the true value of —0.9125. Repeat this com-
putation, but employ the high-accuracy formulas from Figs. 23.1 through 23.3.

Solution. The data needed for this example are

Xi-2=0 flxi2) =12
X1 = 025 S(xi-y) = 1.1035156
x=05 f(x;) = 0.925
Xisy = 0.75 f(xi41) = 0.6363281
Xiv2 =1 f(xi42) = 0.2

The forward difference of accuracy O(h?) is computed as (Fig. 23.1)
—0.2 + 4(0.6363281) — 3(0.925) _

f105) = (025 = —(.859375 e = 5.82%

The backward difference of accuracy O(h”) is computed as (Fig. 23.2)
3(0.925) — 4(1.1035156) + 1.2
(05) = ——————————= = (. 5 & =371%
f(0.5) 2(025) 0.87812 g 7
The centered difference of accuracy O(h") is computed as (Fig. 23.3)

~0.2 + 8(0.6363281) — 8(1.1035156) + 1.2

11(0.5) =— T =-09125 & =0%

As expected, the errors for the forward and backward differences are considerably
more accurate than the results from Example 4.4. However, surprisingly, the centered

ﬂncc vields a perfect result. This is because the formulas based on the Taylor series
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