

Printout

Monday, December 2, 2024 12:44 PM

Section 1

MANE 3351

Subsection 1

Lecture 25

Classroom Management

Agenda

- Octave/Jupyter Notebook Fix
- Homework 7 (assigned 11/20/24, due 12/2/24 - no late submissions)
- Check class schedule
- Return Raspberry Pis and Arduinos (bring to class or take to my office)

Subsection 2

Resources

Handouts

- Lecture 25 slides
- Lecture 25 slides marked

Calendar

Date	Lecture Topic	Lab Topic
12/2	Final Exam Review	no lab
12/4	Supplemental Instruction	no lab
12/9	Final exam 1:15 - 3:00 pm	no lab final

Octave Kernel

- Note: Octave installed previously
- Python: install octave_kernel
- Python: install oct2py (allows python to run Octave program)
- Updated Path variable (not ideal)
- Quick demo

Final Exam Details

- Monday December 12, 2024, 1:15 - 3:00 pm
- Covers material since last test (linear algebra)
 - Part 3 (Days 17 - 24, Homeworks 6 and 7)
- One four inch by six inch notecard allowed
- Scratch paper will be provided
- Calculator needed
- An old final exam is not provided
- Final Exams are not returned
 - You are welcome to schedule an appointment to review your final exam with Dr. Timmer

Final Exam Topics

- Vectors
 - Addition, subtraction, scalar multiplication
- Matrix/Matrices
 - Addition, subtraction, scalar multiplication, multiplication of matrices, transpose of matrix, determinant of matrix (2×2 and 3×3), inverse of matrix
 - Properties of inverse matrix
- Solving Systems of linear equations
 - $A^{-1}b$
 - Row echelon form
 - Gauss Jordan Elimination with partial pivoting
- Finding Inverse of Matrix
 - 2×2 algorithm
 - 3×3 method of minors
 - Gauss Jordan Elimination with partial pivoting

$$Ax = b \rightarrow x = A^{-1}b$$

$$\begin{bmatrix} A & I \end{bmatrix} \rightarrow \begin{bmatrix} I & A^{-1} \end{bmatrix}$$

Grading

- I'm trying to catch up! Keep checking Blackboard
- I'll enforce the syllabus rules on late work
- Stay connected and if you have questions, send me an email

Solutions

- Solutions for Homework 6 and 7 will be posted on Tuesday December 3, 2024
- You can use Octave or linalg to find solutions to all the homework 6 and 7 problems

Grades

- Please login to Blackboard and check your grades often
- If you have any questions, please contact me
- Grades are due Monday, December 16, 2024 at 3:00 pm
- Grades will be posted as soon as they become available (including course grade)

Late Work

- Syllabus

- 10% penalty per day for work submitted after the deadline,
- After one week, no credit will be given for late work
- No late work will be accepted after study day
- Certain assignments where late work will not be accepted will be announced

Turning In Equipment

- Please return the Raspberry Pi's as soon as possible
- Let me know if there will be any problems returning equipment before grades are due

Final Comments

- You should be able to perform any analysis that I did in class or that was in the last two homework assignments
- The final exam covers linear algebra and the last two homework assignments
- You have been a good class, study hard and perform well!