

Printout

Monday, October 14, 2024 11:55 AM

Section 1

MANE 3351

Lecture 14

Classroom Management

Agenda

- Return Test 1
- Simpson's Rule
- Lab 7
- Homework 3 due today
- Homework 4

Calendar

Date	Lecture	Lab
10/14	Simpson's Rule, Homework 4	Lab 7
10/16	Romberg Integration	Lab 7, continued
10/21	No Class, Dr. Timmer on ABET Visit	No Class, Dr. Timmer on ABET Visit
10/23	Gaussian Quadrature, Homework 5	Lab 8
10/28	Numerical Differentiation (not on Test 2)	Lab 8, continued
11/4	Numerical Integration (not on Test 2)	Lab 9
11/6	Linear Algebra, part 1 (not on Test 2)	Lab 9, continued
11/11	Test 2 (Root Finding)	No Lab

Resources

Handouts

- Lecture 14 Slides
- Lecture 14 Marked Slides

Lecture 14

Today's topic is Simpson's Rule.

- Simpson's (1/3) rule is Newton-Cotes with $n = 2$
- Chapra and Canale (2015)^a illustrate Simpson's rule in the figure shown below Simpson's Rule

^aChapra, S., and Canale, R., (2015), *Numerical Methods for Engineers*, 7th edition

Definition of Simpson's Rule

- Chapra and Canale(2015)^a provide the following definition of Simpson's rule

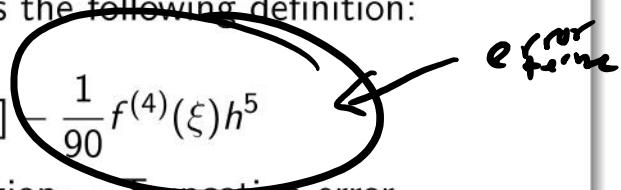
$$I = \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)]$$

where $h = (b - a)/2$

- Note that Simpson's rule is of the form

$$I \approx (b - a) \frac{f(x_0) + 4f(x_1) + f(x_2)}{6}$$

$I \approx \text{width} \times \text{average height}$


^aChapra, S., and Canale, R., (2015), *Numerical Methods for Engineers*, 7th edition

Simpson's Rule Error Analysis

- Chapra and Canale (2015)^a provides the following definition:

$$I = \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)] - \frac{1}{90} f^{(4)}(\xi) h^5$$

I = Simpson's 1/3 approximation – Truncation error

^aChapra, S., and Canale, R., (2015), *Numerical Methods for Engineers*, 7th edition

Multiple Applications of Simpson's Rule

- The number of segments must be even
- The formula is

$$I \approx (b - a) \frac{f(x_0) + 4 \sum_{i=1,3,5}^{n-1} f(x_i) + 2 \sum_{j=2,4,6}^{n-2} f(x_j) + f(x_n)}{3n}$$

where $h = \frac{b-a}{n}$

Pseudo-code: Simpson's 1/3 Rule

- CodeSansar^a provides the following pseudo-code Simpson's 1/3 pseudo-code

^a<https://www.codesansar.com/numerical-methods/integration-simpson-1-3-method-algorithm.htm>

Python Code for Multiple Simpson's 1/3 Rule

```
import math
def f(z):
    return (math.exp(-0.5*z**2)/((2.0*math.pi)**0.5))

n=10
a=-5.0
b=0.0
h=(b-a)/n
sum=f(a)+f(b)
for i in range(1,n):
    # print(i)
    k=a+i*h
    if i%2==0:
        #print("even number")
        sum=sum+2.0*f(k)
    else:
        #print("odd number")
```

Simpson's 3/8 Rule

- Simpson's 3/8 rule is Newton-Cotes with $n = 3$
- Chapra and Canale (2015)^a illustrate Simpson's rule in the figure shown below Simpson's 3/8 Rule

^aChapra, S., and Canale, R., (2015), *Numerical Methods for Engineers*, 7th edition

Definition of Simpson's 3/8 Rule

- Chapra and Canale(2015)^a provide the following definition of Simpson's rule

$$I = \frac{3h}{8} [f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3)]$$

where $h = (b - a)/3$

- Note that Simpson's 3/8 rule is of the form

$$I \approx (b - a) \frac{f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3)}{8}$$

$I \approx$ width \times average height

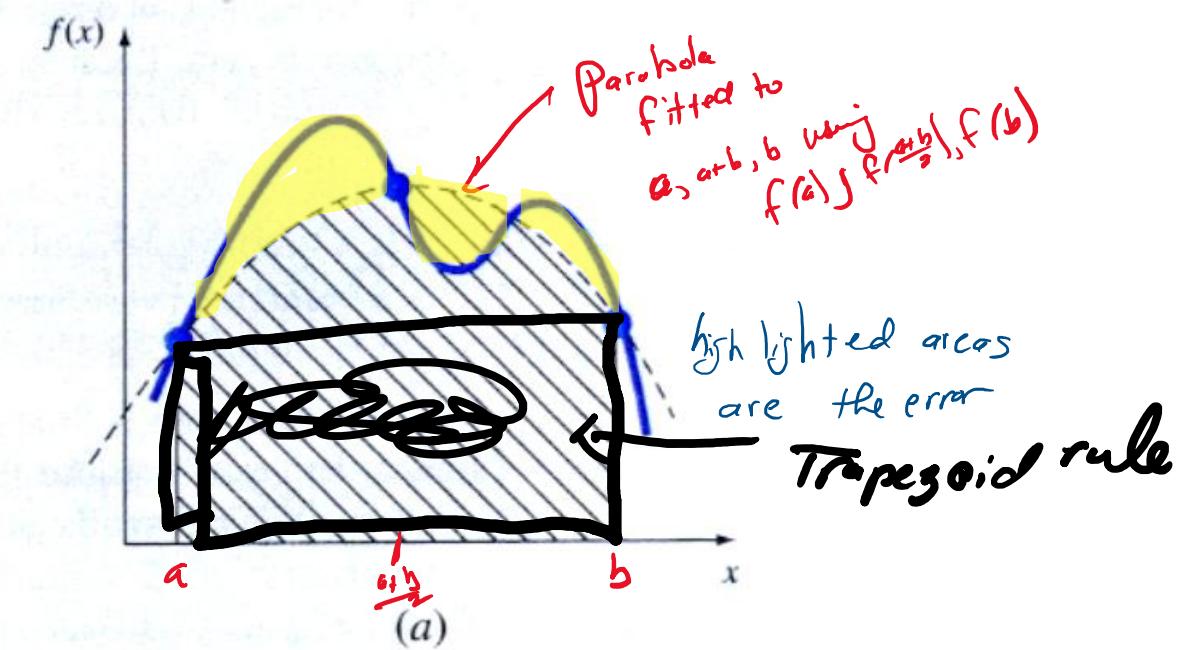
^aChapra, S., and Canale, R., (2015), *Numerical Methods for Engineers*, 7th edition

Truncation Error of Simpson's 3/8 Rule

$$\begin{aligned}E_t &= -\frac{3}{80} h^5 f^{(4)}(\xi) \\&= -\frac{(b-a)^5}{6480} f^{(4)}(\xi)\end{aligned}$$

Classroom Coding: One Interval of Simpson's 3/8 Rule

MANE 3351


÷

15 / 15

Lecture 14

Today's topic is Simpson's Rule.

- Simpson's (1/3) rule is Newton-Cotes with $n = 2$
- Chapra and Canale (2015)³ illustrate Simpson's rule in the figure shown below

Screen clipping taken: 10/14/2024 2:08 PM

$$h = \frac{b-a}{n}$$

$$h = 4$$

$$a = x_0$$

$$b = x_n$$

$$I = (b-a) \underbrace{f(a) + f(b) + 4 \sum_{i=1,3} f(x_i) + 2 \sum_{i=2} f(x_i)}_{\text{center points}}$$

center
 $\frac{a+h}{2}$

$$b = 5$$

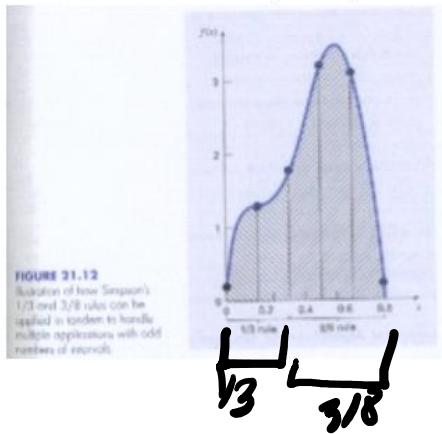
$$a = 0$$

$$n = 4$$

$$\frac{b-a}{n} = 1.25$$

$$0 \quad x = a + 0h = 0 + 0(1.25) = 0$$

$$1 \quad x = a + 1h = 0 + 1(1.25) = 1.25$$


$$2 \quad x = a + 2h = 0 + 2(1.25) = 2.5$$

$$3 \quad x = a + 3h = 0 + 3(1.25) = 3.75$$

$$4 \quad x = a + 4h = 0 + 4(1.25) = 5$$

Simpson's 3/8 Rule

- Simpson's 3/8 rule is Newton-Cotes with $n = 3$
- Chapra and Canale (2015)³ illustrate Simpson's rule in the figure shown below

n	Rule	# of points
1	Trapezoid	2
2	Simpson's 1/3	3
3	Simpson's 3/8	4

Screen clipping taken: 10/14/2024 2:32 PM

~~Test~~ Test 1

Monday, October 14, 2024

2:46 PM

Test 1 228

$$38 \rightarrow 40 \rightarrow -60(.22) = \boxed{-13.2} \text{ on overall grade}$$

$$70 \rightarrow -30(.22) = -6.6 \text{ points}$$