

Section 1

MANE 3351

Lecture 15

Classroom Management

Agenda

- Romberg Integration
- Lab 7, if not completed
- Homework 4 due Monday

Calendar

Date	Lecture	Lab
10/14	Simpson's Rule, Homework 4	Lab 7
10/16	Romberg Integration	Lab 7, continued
10/21	No Class, Dr. Timmer on ABET Visit	No Class, Dr. Timmer on ABET Visit
10/23	Gaussian Quadrature, Homework 5	Lab 8
10/28	Numerical Differentiation (not on Test 2)	Lab 8, continued
11/4	Numerical Integration (not on Test 2)	Lab 9
11/6	Linear Algebra, part 1 (not on Test 2)	Lab 9, continued
11/11	Test 2 (Root Finding)	No Lab

Resources

Handouts

- Lecture 15 Slides
- Lecture 15 Marked Slides

Lecture 15

Today's topic is Romberg Integration

- Clever combination of trapezoid rule and Richardson's Extrapolation
- Highly accurate
- Cheney and Kincaid (2004)^a show example output in the form of a lower triangle from Romberg integration

^aCheny, W., and Kincaid, D., (2004), *Numerical Mathematics and Computer*, 5th edition

The *Romberg algorithm* produces a triangular array of numbers, all of which are numerical estimates of the definite integral $\int_a^b f(x) dx$. The array is denoted here by the notation

$$R(0, 0)$$

$$R(1, 0) \quad R(1, 1)$$

$$R(2, 0) \quad R(2, 1) \quad R(2, 2)$$

$$R(3, 0) \quad R(3, 1) \quad R(3, 2) \quad R(3, 3)$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \ddots$$

$$R(n, 0) \quad R(n, 1) \quad R(n, 2) \quad R(n, 3) \quad \cdots \quad R(n, n)$$

Figure 1: Romberg Integration Results

Step 1

The first step is to calculate $R(0, 0)$

- $R(0, 0)$ is the result of applying the Trapezoid rule with 1 interval
- $R(0, 0) = \frac{1}{2}(b - a)[f(a) + f(b)]$
- For our example of the standard normal pdf with $a = -5$, and $b = 0$, we observe
 - $R(0, 0) = \frac{1}{2}(0 - (-5.0))[f(-5.0) + f(0.0)] = \frac{1}{2}(5.0)[0.0 + 0.398942] = 0.997355$
 - This is a very poor approximation to the true value of 0.5

Step 2

Start a second row and calculate $R(1, 0)$. For each new row, double the number of intervals used in the trapezoid rule

- $R(1, 0)$ is the trapezoid with two intervals
- The general formula for $R(n, 0)$ is

$$R(n, 0) = \frac{1}{2}R(n-1, 0) + h \sum_{k=1}^{2^{n-1}} f[a + (2k-1)h]$$

where $h = (b - a) / 2^n$ and $n \geq 1$

Step 3

Complete the second row and calculate $R(1, 1)$

- The calculation of $R(1, 1)$ utilizes Richardson's extrapolation,
$$R(1, 1) = f[R(1, 0), R(0, 0)]$$
- The general formula for $R(n, m)$ is

$$R(n, m) = R(n, m - 1) + \frac{1}{4^m - 1} [R(n, m - 1) - R(n - 1, m - 1)]$$

Error Analysis

- Cheney and Kincaid (2004)^a reports the following errors
 - The error for the first column is $\mathcal{O}(h^2)$
 - The error for the second column is $\mathcal{O}(h^4)$
 - The error for the third column is $\mathcal{O}(h^8)$
 - and so on

^aCheney, W., and Kincaid, D., (2004), *Numerical Mathematics and Computer*, 5th edition

Pseudo-code

Cheney and Kincaid (2004)^a provide the following pseudo-code

```

procedure Romberg( $f, a, b, n, (r_{ij})$ )
real array  $(r_{ij})_{0:n \times 0:n}$ 
integer  $i, j, k, n$ 

real  $a, b, h, sum$ 
interface external function  $f$ 
 $h \leftarrow b - a$ 
 $r_{00} \leftarrow (h/2)[f(a) + f(b)]$ 
for  $i = 1$  to  $n$  do
     $h \leftarrow h/2$ 
     $sum \leftarrow 0$ 
    for  $k = 1$  to  $2^i - 1$  step 2 do
         $sum \leftarrow sum + f(a + kh)$ 
    end for
     $r_{i0} \leftarrow \frac{1}{2}r_{i-1,0} + (sum)h$ 
    for  $j = 1$  to  $i$  do
         $r_{ij} \leftarrow r_{i,j-1} + (r_{i,j-1} - r_{i-1,j-1})/(4^j - 1)$ 
    end for

```

Python Code for Romberg Integration

```
import math
import numpy as np
def f(z):
    return (math.exp(-0.5*z**2)/((2.0*math.pi)**0.5))
#
a=float(input("Enter the lower limit of the integral: "))
b=float(input("Enter the upper limit of the integral: "))
n=int(input("enter the number of interations (n): "))
#
# initialize matrix r
r=np.zeros(shape=(n+1,n+1))
h=b-a
#find R(0,0)
r[0][0]=(h/2.0)*(f(a)+f(b))
for i in range(1,n+1):
    h=h/2.0
    sum=0.0
```

Romberg Integration by Hand
