

Section 1

MANE 3351

Subsection 1

Lecture 17

Classroom Management

Agenda

- Numerical Differentiation
- Test 2
- Lab Assignment 8

Subsection 2

Resources

Handouts

- Lecture 17 slides
- Lecture 17 slides marked

Calendar

Lecture/Lab	Date	Topic
10/28	Numerical Differentiation (not on Test 2)	Lab 8
10/30	Linear Algebra, part 2 (not on Test 2)	Lab 8
11/4	Linear Algebra, part 1 (not on Test 2)	Lab 9
11/6	Test 2 (Root Finding and Numerical Integration)	No Lab

Test 2

- Content
 - Lectures 8 - 16 (9/23 - 10/23)
 - Homeworks 3 - 5
- You are allowed one 4 inch by 6 inch notecard
- Calculator needed
- Previous test and handout provided

Lecture Topics

- Lecture 8 - Root Finding, Bisection lecture
- Lecture 9 - Bisection Method Error Analysis, False Position Method
- Lecture 10 - No lecture - Test 1
- Lecture 11 - Newton's Method
- Lecture 12 - Secant Method
- Lecture 13 - Numerical Integration, Trapezoid Rule
- Lecture 14 - Simpson's 1/3 Rule, Simpson's 3/8 Rule
- Lecture 15 - Romberg Integration
- Lecture 16 - Gaussian Integration

Derivatives

You are responsible for calculating the following derivatives:

- Polynomial: $ax^3 + bx^2 + cx + d$ (arbitrary power)
- $a \sin(bx)$
- $a \cos(bx)$
- ae^{bx}
- $a \ln(bx)$
- Product Rule: $\frac{d}{dx} f(x)g(x) = f(x)g'(x) + f'(x)g(x)$

Lecture 17

The topic for Lecture 17 is numerical differentiation. This topic will **NOT** be on Test 2 and the material is taken from the Chapra and Canale textbook

Forward finite-divided-difference formulas

FIGURE 23.1

Forward finite-divided-difference formulas: two versions are presented for each derivative. The latter version incorporates more terms of the Taylor series expansion and is, consequently, more accurate.

First Derivative

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h} \quad O(h)$$

$$f'(x_i) = \frac{-f(x_{i+2}) + 4f(x_{i+1}) - 3f(x_i)}{2h} \quad O(h^2)$$

Second Derivative

$$f''(x_i) = \frac{f(x_{i+2}) - 2f(x_{i+1}) + f(x_i)}{h^2} \quad O(h)$$

$$f''(x_i) = \frac{-f(x_{i+3}) + 4f(x_{i+2}) - 5f(x_{i+1}) + 2f(x_i)}{h^2} \quad O(h^2)$$

Third Derivative

$$f'''(x_i) = \frac{f(x_{i+3}) - 3f(x_{i+2}) + 3f(x_{i+1}) - f(x_i)}{h^3} \quad O(h)$$

$$f'''(x_i) = \frac{-3f(x_{i+4}) + 14f(x_{i+3}) - 24f(x_{i+2}) + 18f(x_{i+1}) - 5f(x_i)}{2h^3} \quad O(h^2)$$

Fourth Derivative

$$f''''(x_i) = \frac{f(x_{i+4}) - 4f(x_{i+3}) + 6f(x_{i+2}) - 4f(x_{i+1}) + f(x_i)}{h^4} \quad O(h)$$

$$-2f(x_{i+5}) + 11f(x_{i+4}) - 24f(x_{i+3}) + 26f(x_{i+2}) - 14f(x_{i+1}) + 3f(x_i) \quad \approx L21$$

Backward finite-divided-difference formulas

First Derivative	Error
$f'(x_i) = \frac{f(x_i) - f(x_{i-1})}{h}$	$O(h)$
$f'(x_i) = \frac{3f(x_i) - 4f(x_{i-1}) + f(x_{i-2})}{2h}$	$O(h^2)$
Second Derivative	
$f''(x_i) = \frac{f(x_i) - 2f(x_{i-1}) + f(x_{i-2})}{h^2}$	$O(h)$
$f''(x_i) = \frac{2f(x_i) - 5f(x_{i-1}) + 4f(x_{i-2}) - f(x_{i-3})}{h^2}$	$O(h^2)$
Third Derivative	
$f'''(x_i) = \frac{f(x_i) - 3f(x_{i-1}) + 3f(x_{i-2}) - f(x_{i-3})}{h^3}$	$O(h)$
$f'''(x_i) = \frac{5f(x_i) - 18f(x_{i-1}) + 24f(x_{i-2}) - 14f(x_{i-3}) + 3f(x_{i-4})}{2h^3}$	$O(h^2)$
Fourth Derivative	
$f''''(x_i) = \frac{f(x_i) - 4f(x_{i-1}) + 6f(x_{i-2}) - 4f(x_{i-3}) + f(x_{i-4})}{h^4}$	$O(h)$
$f''''(x_i) = \frac{3f(x_i) - 14f(x_{i-1}) + 26f(x_{i-2}) - 24f(x_{i-3}) + 11f(x_{i-4}) - 2f(x_{i-5})}{h^4}$	$O(h^2)$

FIGURE 23.2

Backward finite-divided-difference formulas: two versions are presented for each derivative. The latter version incorporates more terms of the Taylor series expansion and is, consequently, more accurate.

Figure 2: Figure 23.2

Centered finite-divided-difference formulas

FIGURE 23.3

Centered finite-divided-difference formulas: two versions are presented for each derivative. The latter version incorporates more terms of the Taylor series expansion and is, consequently, more accurate.

First Derivative

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h}$$

$O(h^2)$

$$f'(x_i) = \frac{-f(x_{i+2}) + 8f(x_{i+1}) - 8f(x_{i-1}) + f(x_{i-2})}{12h}$$

$O(h^4)$

Second Derivative

$$f''(x_i) = \frac{f(x_{i+1}) - 2f(x_i) + f(x_{i-1})}{h^2}$$

$O(h^2)$

$$f''(x_i) = \frac{-f(x_{i+2}) + 16f(x_{i+1}) - 30f(x_i) + 16f(x_{i-1}) - f(x_{i-2})}{12h^2}$$

$O(h^4)$

Third Derivative

$$f'''(x_i) = \frac{f(x_{i+2}) - 2f(x_{i+1}) + 2f(x_{i-1}) - f(x_{i-2})}{2h^3}$$

$O(h^2)$

$$f'''(x_i) = \frac{-f(x_{i+3}) + 8f(x_{i+2}) - 13f(x_{i+1}) + 13f(x_{i-1}) - 8f(x_{i-2}) + f(x_{i-3})}{8h^3}$$

$O(h^4)$

Fourth Derivative

$$f''''(x_i) = \frac{f(x_{i+2}) - 4f(x_{i+1}) + 6f(x_i) - 4f(x_{i-1}) + f(x_{i-2})}{h^4}$$

$O(h^2)$

$$f''''(x_i) = \frac{-f(x_{i+3}) + 12f(x_{i+2}) - 39f(x_{i+1}) + 56f(x_i) - 39f(x_{i-1}) + 12f(x_{i-2}) - f(x_{i-3})}{6h^4}$$

$O(h^4)$

Figure 3: Figure 23.3

Example Problem

EXAMPLE 23.1
High-Accuracy Differentiation Formulas

Problem Statement. Recall that in Example 4.4 we estimated the derivative of

$$f(x) = -0.1x^4 - 0.15x^3 - 0.5x^2 - 0.25x + 1.2$$

at $x = 0.5$ using finite divided differences and a step size of $h = 0.25$,

	Forward $O(h)$	Backward $O(h)$	Centered $O(h^2)$
Estimate	-1.155	-0.714	-0.934
ϵ_t (%)	-26.5	21.7	-2.4

where the errors were computed on the basis of the true value of -0.9125 . Repeat this computation, but employ the high-accuracy formulas from Figs. 23.1 through 23.3.

Solution. The data needed for this example are

$$\begin{array}{ll} x_{i-2} = 0 & f(x_{i-2}) = 1.2 \\ x_{i-1} = 0.25 & f(x_{i-1}) = 1.1035156 \\ x_i = 0.5 & f(x_i) = 0.925 \\ x_{i+1} = 0.75 & f(x_{i+1}) = 0.6363281 \\ x_{i+2} = 1 & f(x_{i+2}) = 0.2 \end{array}$$

The forward difference of accuracy $O(h^2)$ is computed as (Fig. 23.1)

$$f'(0.5) = \frac{-0.2 + 4(0.6363281) - 3(0.925)}{2(0.25)} = -0.859375 \quad \epsilon_t = 5.82\%$$

The backward difference of accuracy $O(h^2)$ is computed as (Fig. 23.2)

$$f'(0.5) = \frac{3(0.925) - 4(1.1035156) + 1.2}{2(0.25)} = -0.878125 \quad \epsilon_t = 3.77\%$$

The centered difference of accuracy $O(h^4)$ is computed as (Fig. 23.3)

$$f'(0.5) = \frac{-0.2 + 8(0.6363281) - 8(1.1035156) + 1.2}{12(0.25)} = -0.9125 \quad \epsilon_t = 0\%$$

As expected, the errors for the forward and backward differences are considerably more accurate than the results from Example 4.4. However, surprisingly, the centered difference yields a perfect result. This is because the formulas based on the Taylor series