

Section 1

MANE 3351

Lecture 23

Classroom Management

Agenda

- Gauss Jordan Elimination, Partial Pivoting, Matrix Inversion using Gauss Jordan
- Homework 7 (assigned 11/20/24, due 12/2/24 - no late submissions)
- Lab today for those who did not finish

Resources

Handouts

- Lecture 23 slides
- Lecture 23 slides marked

Calendar

Date	Lecture Topic	Lab Topic
11/18	Lecture 22 - Row Echelon Form	Lab 10 - Row Echelon Form/Ch
11/20	Lecture 23 - Gaussian Elimination	
11/25		
11/27		
12/2		
12/4	Review	
12/9	Final exam 1:15 - 3:00 pm	

Assignments

Gauss-Jordan Elimination

- A Step-by-Step Method for Solving Linear Systems
- An extension of row-echelon form

Introduction to Gauss-Jordan Elimination

- Gauss-Jordan elimination is a method to solve systems of linear equations.
- Goal: Transform the matrix into reduced row-echelon form (RREF).
- Key feature: The solution is read directly from the matrix.
- Distinguish from Row Echelon Form

Key Steps in Gauss-Jordan Elimination

① Row Operations:

- Swap two rows.
- Multiply a row by a nonzero scalar.
- Add or subtract multiples of one row to another.

② Transform to RREF:

- Each leading entry is 1 (pivot).
- Pivots are the only nonzero entries in their column.

Example Problem

Solve the system:

$$x + y + z = 6$$

$$2x + 3y + z = 14$$

$$y + 2z = 8$$

Step-by-Step Solution

- ① Convert the system to an augmented matrix.
- ② Use row operations to make the first pivot 1.
- ③ Eliminate all other entries in the pivot column.
- ④ Repeat for each subsequent pivot.

Final Result

- Matrix in reduced row-echelon form (RREF):

$$\begin{bmatrix} 1 & 0 & 0 & a \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & c \end{bmatrix}$$

- Solution: $x = a$, $y = b$, $z = c$.

Applications of Gauss-Jordan Elimination

- Solving systems of linear equations.
- Finding inverse matrices.
- Used in engineering, physics, computer science, etc.

Summary of Gauss-Jordan Elimination

- Gauss-Jordan elimination simplifies solving linear systems.
- Three row operations ensure clarity and consistency.
- Matrix RREF provides direct solutions.

Partial Pivoting

- A **pivot** is the leading non-zero element in a row used to simplify the matrix.
- Pivoting ensures numerical stability during elimination.
- Types of pivoting:
 - ① **Partial Pivoting:** Swap rows to place the largest absolute value in the pivot position.
 - ② **Complete Pivoting:** Reorder rows and columns to place the largest value in the pivot position.

Why Pivoting is Necessary

- Avoid division by small numbers (reduce round-off errors).
- Improve accuracy in solving systems.
- Ensure numerical stability for ill-conditioned matrices.

Example Problem

Solve the system of equations:

$$0.0001x + y + z = 1$$

$$x + y + z = 6$$

$$2x + y + 10z = 20$$

Form the Augmented Matrix

Represent the system as an augmented matrix:

$$\left[\begin{array}{ccc|c} 0.0001 & 1 & 1 & 1 \\ 1 & 1 & 1 & 6 \\ 2 & 1 & 10 & 20 \end{array} \right]$$

- The first three columns are the coefficients of the variables x, y, z .
- The fourth column is the constants on the right-hand side.

Perform Partial Pivoting

- ① Compare the absolute values in the first column:

Column 1: $|0.0001|, |1|, |2|$

Largest value: 2.

- ② Swap row 1 with row 3:

$$\left[\begin{array}{ccc|c} 2 & 1 & 10 & 20 \\ 1 & 1 & 1 & 6 \\ 0.0001 & 1 & 1 & 1 \end{array} \right]$$

Elimination Step-by-Step

- ① Eliminate entries below the pivot in the first column:

$$R_2 \rightarrow R_2 - \frac{1}{2}R_1, \quad R_3 \rightarrow R_3 - \frac{0.0001}{2}R_1$$

- ② Resulting matrix:

$$\left[\begin{array}{ccc|c} 2 & 1 & 10 & 20 \\ 0 & 0.5 & -4 & -4 \\ 0 & 0.99995 & 0.9995 & 0.9995 \end{array} \right]$$

- ③ Repeat pivoting and elimination for columns 2 and 3.

Slide 8: Complete Solution

- After performing Gauss-Jordan elimination with pivoting:

$$\left[\begin{array}{ccc|c} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{array} \right]$$

- Solution:

$$x = 2, \quad y = 1, \quad z = 1$$

Slide 9: Challenges and Limitations

- Pivoting increases computational complexity for larger matrices.
- Requires additional bookkeeping for row swaps.
- May not guarantee exact accuracy for ill-conditioned matrices.

Applications of Pivoting

- Engineering: Solving large systems of linear equations.
- Computer science: Numerical simulations and optimizations.
- Physics: Stability in solving differential equations.

Summary

- Pivoting improves the accuracy and stability of Gauss-Jordan elimination.
- Partial pivoting is a practical and efficient choice.
- Numerical stability is crucial for solving large or complex systems.

Using Gauss-Jordan Elimination to find Inverse Matrix

- To find the inverse of a matrix A , we augment it with the identity matrix I .
- Perform Gauss-Jordan elimination to transform A into I , turning I into A^{-1} .
- Works only if the matrix A is invertible (determinant $\neq 0$).

Key Steps

- ① Write the augmented matrix $[A|I]$.
- ② Use row operations to transform A into the identity matrix I .
- ③ The resulting augmented matrix will be $[I|A^{-1}]$.

Example Problem

Find the inverse of:

$$A = \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}$$

- Form augmented matrix:

$$\left[\begin{array}{cc|cc} 2 & 1 & 1 & 0 \\ 5 & 3 & 0 & 1 \end{array} \right]$$

Step-by-Step Solution

- 1 Scale the first row to make the pivot 1:

$$R_1 \rightarrow R_1/2$$

Result:

$$\left[\begin{array}{cc|cc} 1 & 0.5 & 0.5 & 0 \\ 5 & 3 & 0 & 1 \end{array} \right]$$

② Eliminate the first column of R_2 :

$$R_2 \rightarrow R_2 - 5 \cdot R_1$$

Result:

$$\left[\begin{array}{cc|cc} 1 & 0.5 & 0.5 & 0 \\ 0 & 0.5 & -2.5 & 1 \end{array} \right]$$

③ Scale the second row to make the pivot 1:

$$R_2 \rightarrow R_2/0.5$$

Result:

$$\left[\begin{array}{cc|cc} 1 & 0.5 & 0.5 & 0 \\ 0 & 1 & -5 & 2 \end{array} \right]$$

④ Eliminate the second column of R_1 :

$$R_1 \rightarrow R_1 - 0.5 \cdot R_2$$

Result:

$$\left[\begin{array}{cc|cc} 1 & 0 & 3 & -1 \\ 0 & 1 & -5 & 2 \end{array} \right]$$

Final Result

- The final augmented matrix is:

$$\left[\begin{array}{cc|cc} 1 & 0 & 3 & -1 \\ 0 & 1 & -5 & 2 \end{array} \right]$$

- Inverse of A :

$$A^{-1} = \begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix}$$

Conditions for Invertibility

- A matrix A is invertible if:
 - ① It is square ($n \times n$).
 - ② Determinant of $A \neq 0$.
- For 2×2 :

$$\det(A) = ad - bc \neq 0$$

Summary

- Gauss-Jordan elimination transforms A into I , revealing A^{-1} .
- Method highlights the importance of row operations.
- Verifiable through matrix multiplication: $A \cdot A^{-1} = I$.

Discussion of ChatGPT

- These slides were prepared using ChatGPT
 - The partial pivoting slides contained an error that required a prompt to be modified
- There was one lab on Monday that created coded that gave a wrong answer