

Section 1

MANE 3351

Subsection 1

Lecture 24

Classroom Management

Agenda

- Octave/Jupyter Notebook Demonstration
- Homework 7 (assigned 11/20/24, due 12/2/24 - no late submissions)
- Check class schedule
- Return Raspberry Pis and Arduinos (bring to class or take to my office)

Subsection 2

Resources

Handouts

- Lecture 24 slides
- Lecture 24 slides marked

Calendar

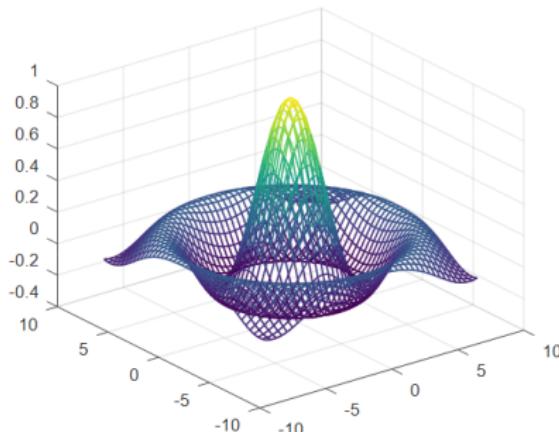
Date	Lecture Topic	Lab Topic
11/25	Octave/Matlab	no lab
11/27	no lecture	no lab
12/2	Final Exam Review	no lab
12/4	Supplemental Instruction	no lab
12/9	Final exam 1:15 - 3:00 pm	no lab final

Assignments

- Lab 10 (assigned 11/18, due 11/25 (before lab))
- Homework 7 (assigned 11/20, due 12/2 - no late submissions)

Octave

About Donate Download Get Involved News Support/Help Docs



Scientific Programming Language

- Powerful mathematics-oriented syntax with built-in plotting and visualization tools
- Free software, runs on GNU/Linux, macOS, BSD, and Windows
- Drop-in compatible with many Matlab scripts

[Download](#)

[Docs](#)

Syntax Examples

The Octave syntax is largely compatible with Matlab. The Octave interpreter can be run in GUI mode, as a console, or invoked as part of a shell script. More Octave examples can be found in [the wiki](#).

Figure 1: Octave

Octave Kernel for Jupyter Notebook

- Recommended to also installed gnuplot at the same time
- Installation Instructions
 - Installation Instruction for Anaconda Python
 - Installation Instructions for non-Anaconda Versions of Python

Octave Demonstration

- Homework 6