MANE 3351

Section 1

MANE 3351

. 1/23



MANE 3351 Lecture 4

Subsection 1

Lecture 4 J

. 2723



MANE 3351 Lecture 4

Classroom Management

Agenda

@ Numerical Representations in a computer
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Handouts

@ Lecture 4 Slides
@ Lecture 4 Marked Slides
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Assignments

o Create GitHub account, see supplemental materials
e Complete Lab 1 before 9/11/2024 at 2:00 pm
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Embrace Your Inner Skeptic

Definition: Numerical Methods

Home > Computing » Dictionaries thesauruses pictures and press releases » numerical methods

Numerical Methods

ADictionar

© A Dictiena

Numerical methods Methods designed for the constructive solution of mathematical problems
requiring particular numerical results, usually on a computer. A numerical method is a complete and
unambiguous set of procedures for the solution of a problem, together with computable error estimates
(see error analysis). The study and implementation of such methods is the province of numerical

analysis. a

?“numerical methods.” A Dictionary of Computing. Retrieved August 27, 2019 from
Encyclopedia.com: https://www.encyclopedia.com/computing/dictionaries-thesauruses-
pictures-and-press-releases/numerical-methods
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Embrace your Inner Skeptic

ZIALICE SHUUIU LULIDULL LULULLL L VIVE VA vy

Becoming familiar with basic numerical methods without realizing their
limitations would be foolhardy. Numerical computations are almost invariably
contaminated by errors, and it is important to understand the source, propagation,
magnitude, and rate of growth of these errors. Numerical methods that provide
approximations and error estimates are more valuable than those that provide only
approximate answers. While we cannot help but be impressed by the speed and
accuracy of the modern computer, we should temper our admiration with generous
measures of skepticism. As the eminent numerical analyst Carl-Erik Froberg once
remarked:

Never in the history of mankind has it been possible to produce so
many wrong answers so quickly!

Thus, one of our goals is to help the reader arrive at this state of skepticism, armed
with methods for detecting, estimating, and controlling errors.

The reader is expected to be familiar with the rudiments of programming.
Algorithms are presented as pseudocode and no particular programming language
is adopted.
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Evaluating Numerical Methods

Numerical methods should consider these two evaluation criterion :
@ Accuracy (or error) analysis
@ Speed
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Introduction to Error Analysis

Error Measurements

Let v4 be the approximate value and vg be the exact value
@ Absolute error: |va — VE|

@ Relative error: %

@ Percentage error: WAV;EVE' x 100%
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Sources of Error

Sources of Errors

@ Round-off errors are due to the fact that the computers represent
numbers in a finite number of bits and bytes

@ Truncation errors are errors that emerge from the approximation of
the mathematical model

@ Model errors are due to the fact that the mathematical model usually
is an approximation of the physical reality

V.
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Number Types in Python

Python supports int, float, and complex.
@ Integers can be represented exactly
@ Float and complex variables can be represented approximately
@ “Floating-point numbers are usually implemented using double in C

1)

“Python 3.12.5 Documentation » The Python Standard Library » Built-in Types.
Retrieved September 6, 2024 from: https://docs.python.org/3/library/stdtypes.html
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Computer Implementation of Floats

IEEE Standard 754 Floating Point Numbers
IEEE Standard 754 Floating Point Numbers

The IEEE Standard for Floating-Point Arithmetic (IEEE 754) is a technical standard for floating-
point computation which was established in 1985 by the Institute of Electrical and Electronics
Engineers (IEEE). The standard addressed many problems found in the diverse floating point
implementations that made them difficult to use reliably and reduced their portability. IEEE
Standard 754 floating point is the most common representation today for real numbers on
computers, including Intel-based PC's, Macs, and most Unix platforms

There are several ways to represent floating point number but IEEE 754 is the most efficient in

most cases. IEEE 754 has 3 basic components:

1. The Sign of Mantissa —

This is as simple as the name. 0 represents a positive number while 1 represents a
negative number.

The Biased exponent -

The exponent field needs to represent both positive and negative exponents. A bias is
added to the actual exponent in order to get the stored exponent

The Normalised Mantisa —

The mantissa is part of a number in scientific notation or a floating-point number,
consisting of its significant digits. Here we have only 2 digits,i.e. 0Oand 1.So a
normalised mantissa is one with only one 1 to the left of the decimal.

N

w

IEEE 754 numbers are divided into two based on the above three components: single

precision and double precision.
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Floating Point Representation

Tools & Thoughts
IEEE-754 Floating Point Converter

Translations: de

This page allows you to convert between the decimal representation of numbers (like "1.02") and the binary format used by all modern CPUs (IEEE 754 floating point).

IEEE 754 Converter (JavaScript), V0.22

Sign Exponent Mantissa
Value: +1 27 1.2799999713897705
Encoded as: 0 120 2348810
Binary: v v v v v v v v v v v
You entered 0.01

Value actually stored in float: 0.00999999977648258209228515625

Error due to conversion: -2.2351741790771484375E-10
Binary Representation 00111100001000111101011100001010
Hexadecimal Representation 0x3c23d70a
a
“FloatConvertor. Retrieved August 28, 2019 from:
https://www.h-schmidt.net/FloatConverter/IEEE754.html
£
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Perils of Floating Point

Binary Floating-Point

At the heart of many strange results is one fundamental: floating-point on computers is usually base 2, whereas
the external representation is base 10. We expect that 1/3 will not be exactly representable, but it seems
intuitive that .01 would be. Not so! .01 in IEEE single-precision format is exactly 10737418/1073741824 or
approximately 0.009999999776482582. You might not even notice this difference until you see a bit of code like
the following:

REAL X
DATA X /.01/
IF ( X * 166.d@ .NE. 1.@ ) THEN
PRINT *, 'Many systems print this surprising result.
ELSE
PRINT *, 'And some may print this.'
ENDIF

Base-10 floating-point implementations don't have this anomaly. However, base-10 floating-point
implementations are rare because base-2 (binary) arithmetic is so much faster on digital computers. a

“Perils of Floating Point. Retrieved August 28, 2019 from:
http://www.lahey.com /float.htm
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Single Precision Range

single: 8 bits single: 23 bits
double: 11 bits double: 52 bits

| S | Exponent Fraction

SINGLE-PRECISION RANGE

o Exponents 00000000 and 11111111 are reserved
o Smallest value

¢ Exponent: 00000001
= actual exponent =1—127=-126

e Fraction: 000...00 = significand = 1.0
e £1.0 X 27126~ £1.2 X 10738

o Largest value

e exponent: 11111110
= actual exponent = 254 — 127 = +127
e Fraction: 111...11 = significand = 2.0 .

o £2.0 X 21127 = £3 4 X 10%38
B 19723
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Single Floating-Point Precision

single: 8 bits single: 23 bits
double: 11 bits double: 52 bits
‘ S| Exponent Fraction

FLOATING-POINT PRECISION

oRelative precision
¢ all fraction bits are significant
* Single: approx 223

oEquivalent to 23 X log,,2~23 %X 0.3=6
decimal digits of precision

e Double: approx 2752

oEquivalent to 52 X log,,2 = 52 X 0.3 = 16
decimal digits of precision
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Double Precision Range J
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Double Floating-Point Precision J
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