Skip to content

MANE 6313

Week 4, Module H

Student Learning Outcome

Analyze simple comparative experiments and experiments with a single factor.

Module Learning Outcome

Evaluate the Box-Cox Transformation for non-homoskedastic data.


Box-Cox Method

  • Power transformation used to stabilize variance
\[ y^*=y^\lambda \]
  • Computational formula
\[ y^{(\lambda)}=\left\{ \begin{array}{cc}\frac{y^\lambda-1}{\lambda\dot{y}^{\lambda-1}} & \lambda\neq 0\\ \dot{y}\ln y & \lambda=0 \end{array}\right. \]
  • Note \(\dot{y}\) is the geometric mean and is computed by using
\[ \dot{y}=\ln^{-1}\left[\frac{\sum\ln y}{n}\right] \]

Selecting Value of Lambda

  • Plot \(\lambda\) versus \(SS_E\left(\lambda\right)\)
  • Correspondence between Box-Cox Values and transformations
lambda Transformation
-2 \(\frac{1}{x^2}\)
-1 \(\frac{1}{x}\)
-0.5 \(\frac{1}{\sqrt{x}}\)
0 \(\log(x)\)
1 \(x\)
2 \(x^2\)

Source


Box Cox Transformation


Exact Value of Lambda


Transformed Data


R Demonstration